论文笔记 Ensemble of Deep Convolutional Neural Networks for Learning to Detect Retinal Vessels in Fundus

本文介绍了使用深度学习,特别是卷积神经网络(CNN),进行视网膜血管检测的研究。通过端到端的训练,无需预处理,直接预测像素是否存在血管。文中提及的Ensemble方法结合12个网络的预测结果,实现了高精度的检测。在DRIVE数据集上,不使用Ensemble的单个网络模型也能达到95.9%的准确率。训练和测试过程中,利用Caffe框架进行模型构建和优化,最终能够快速生成逐像素预测值。
摘要由CSDN通过智能技术生成

最近读了几篇关于DRIVE数据集的文章,来完成斯坦福公开课cs231n最后的Final Project,还有zju两门课的作业,哈哈哈,一举三得(^__^) ~~

大概目标就是分割血管,如下图:
这里写图片描述

虽然是个很老的数据库,不过近几年在深度学习的热度下,又有很多人拿来做,尤其是这几个印度学(a)者(san),

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值