转 第三章 三角学应用(1)(as3.0)

从这一章开始,我们将学习三角学,并在第五章开始应用到动画技术中,其实在下一章的绘
图技术中就会接触到。如果你已经对三角学有所了解或渴望学习动画方面的知识, 那么可以
跳过开始这部分,待日后遇到不懂的问题时,再回来学习。我们用到的 90%的三角学都需
要 Math.sin 和 Math.cos 这两个函数。在我写本书的第一版时,曾说过,除了在中学学习
过的那些代数和几何外(而且由于时间久远大多都记不清了),我没有接受过正规的数学培
训,最初在本章中的内容都是来自于各种书籍,网站或是其它网络资源,这是因为这部分知
识并不难,既然我能够学会,那么你也一定可以的。而现在我已经完成了大学代数和微积分
课程,对于三角学也有了更为全面和系统的了解。我可以很荣幸地说, 这一章的内容非常好,
因为对于这个学科有了更为深入的了解,所以很多地方可以解释得更为清楚。
什么是三角学(Trigonometry)
    三角学是一门研究三角形与其边和角关系的学科。 当我们观察一个三角形时,发现它有
三条边和三个角(因此称为三角),而且在这些边和角之间存在着一些特殊的关系。例如,
增大其中的任何一个角,那么该角所对应的边就会增长(假设其它两条边长度不变) 同时,
                                                                           ,
其它两个角会变小,实际上,究竟它们变化了多少,加以计算后就可以得出一个比例。在一
个三角形中,如果其中有一个角为 90 度,那么就称为直角三角形,并在该角的夹角处标出
一个正方形(垂足),只有在直角三角形才会这样。学习直角三角形中存在的关系要比推导
基本公式简单得多,这使得直角三角形成为一种非常有用的结构, 本章及该书后面的内容大
多都是直角三角形。
角(Angle)
    角是三角学最主要的研究对象,  让我们先来解决这个问题。 角是由两条相交线构成的图
形,或是两条相交线之间的那部分空间,空间远大,夹角越大。事实上,两条相交的线会形
成四个角,见图 3-1:

转 <wbr>第三章 <wbr>三角学应用(1)(as3.0)


图 3-1 两条线形成四个角
弧度制(radian)与角度制(degress)
    弧度制与角度制是角度测量中的两种特殊制度。   我们大概对于角度制最为熟悉,甚至闭
着眼都能画出 45 度或 90 度的角。圆的 360 度体系已经成为了一种文化,人们常说“180 度

转弯”就是指“转到相反的方向”,这里并不是指转弯的方向,而是指一种相反的观点。我
们所讨论的角度,对于计算机来说,就是弧度。所以,不管你是否喜欢,都要对弧度制有所
了解。
    1 弧度约等于 57.2958 度。你也许会问“这符合逻辑吗?”确实有其逻辑所在。一个圆,
360 度,计算出的弧度为 6.2832。仍然没有任何意义?好,想一下圆周率派 Pi(π) 约等于
3.1416,而一个圆(6.2832 弧度)就等于 2 pi。我们知道 360 度相当于 2 pi,180 度相当
于 pi,90 度相当于 pi/2,等等。图 3-2 给出一些常用的弧度制。
转 <wbr>第三章 <wbr>三角学应用(1)(as3.0)

图 3-2 弧度与角度
     从现在起我们就要开始使用弧度制了,而且今后会遇到很多用弧度表示度的情况。
     影片剪辑和 Sprite 影片的 rotation 属性都要使用角度制,而且属性非常会经常使
用。例如,一辆汽车需要旋转到运动的方向,如果使用三角学计算运动方向,那么所得到的
角度是以弧度制表示的,而汽车的旋转则需要使用角度制。相反,如果要指定某个对象向某
个方向前进,就要获得它的旋转(rotation)角度,而这是用角度制表示的,如果要在三角函
数中使用它就一定要转换为弧度制。
角度制,还应用在滤镜上,如果使用投影滤镜(drop shadow filter),来为物体投射 45 度
的阴影,就需要指定其角度而非弧度,不论是在 Flash IED 中还是使用 ActionScript 代
码都一样。
     为什么在一个编程体系里有两种截然不同的制度呢?也许这就是 Flash 双重性。一方
面,这是设计人员的工具,在 Flash IDE 中拥有所有的绘图和变形工具,可以绘制出漂亮
的图形。如果你对一名设计员说把你制作的 logo 文字旋转一个弧度,你肯定会遭白眼。另
一方面,Flash 也是一个开发工具,更像一种编程语言,ActionScript 用户使用弧度制。
总之,不论你是否喜欢都要使用到它们,而且还需要掌握角度制与弧度制间的相互转换。以
下是公式:
弧度(radians) = 角度(degrees) * Math.PI /180
角度(degrees) = 弧度(radians) * 180 / Math.PI
     在学习本书的过程中,会遇到很多公式。无论哪里,遇到需要记忆的公式时,我都会指
出来,希望大家能够识记,这里是第一个公式。每次需要用到这些公式时,可以查找一下,
但不会得到现成的代码,  因为这些代码都需要用手敲进去。我使用 ActionScript 写这些公
式,比如使用 Math.PI 要比使用 pi 或其它字符要好, 因为这和我们输入的代码是一致的。
     180 度大约等于 3.14…弧度。换句话讲,半圆为 pi 个弧度,整圆为 2 pi 个弧度,一
个弧度大概为 57.29…度。


Flash 坐标系
    在讨论角度时, 就要提到 Flash 坐标系。如果我们习惯于数学坐标系,那么对于 Flash
坐标系可能会有些不习惯,因为在这里一切是颠倒(upside down)的。在标准坐标系中,用
X 表示水平轴,用 Y 表示垂直轴,Flash 也是一样。当 x=0,y=0 时,坐标(0,0)通常显示在
中心位置,X 为正数时在右边,X 为负数时在左边,Y 为正数时在上边,Y 为负数时在下边,
如图 3-3 所示。

转 <wbr>第三章 <wbr>三角学应用(1)(as3.0)
图 3-3 标准坐标系
    然而 Flash 是基于视频屏幕的坐标系,0,0 点为左上角,如图 3-4。X 值从左向右不断
增大,但 Y 轴是相反的,正值向下,负值向上。这个系统有其历史根源,与屏幕扫描建立图
像的原理一样,从左到右,从上到下。
转 <wbr>第三章 <wbr>三角学应用(1)(as3.0)
图 3-4 Flash 坐标系
    我们可以想像成一个普通的坐标系,只是要把 Y 轴颠倒过来,并把屏幕中心迁移到屏幕
的左上角。下面就来说说角。在一般的坐标系中,角度是以逆时针计算的,并以 0 度为起点
向正 X 轴引一条线,如图 3-5 所示。
转 <wbr>第三章 <wbr>三角学应用(1)(as3.0)

图 3-5 普通的角度
在 Flash 中是颠倒的,如图 3-6 所示。顺时针旋转角度为正角。逆时针就意味着为负角。
转 <wbr>第三章 <wbr>三角学应用(1)(as3.0)

图 3-6 Flash 的角度
三角形的边
    对于三角形的边,没有太多可说的,但它们都有各自的术语。以直角三角形为例,如图
3-7 所示,每条边都有各自的名称,与 90 度角相接的两条边称为直角边(legs),相对的边
称为斜边,它总是那个最长的边。
转 <wbr>第三章 <wbr>三角学应用(1)(as3.0)

图 3-7 直角三角形各部分
     刚才说到对边时,说它是与该角不相接的边。说到邻边时,说它是与角相接的边。在很
多例子中, 都是与其余两个不是 90 度的角打交道。在三角形中最有趣的就是角与边的关系,
这些关系对于动画制作非常有用,下面就让我们来看看。
三角函数
     ActionScript 拥有一套用于计算不同三角关系的三角函数:正弦,余弦,正切,反正
弦,反余弦和反正切。 下面我们就开始定义和使用这些函数,而后还会介绍它们的实际应用。
正弦(Sine)
     下面是三角学的第一个部分。一个角的正弦值等于该角的对边与斜边的比,在
ActionScript 中,使用 Math.sin(angle) 函数来表示。 3-8 所示为一个 30 度角的正弦。
                                                   图
对边长为 1,斜边长为 2,两条边的比为 1 比 2,或记作 1/2 或 0.5,因此,我们可以说 30
度角的正弦值为 0.5,下面在 Flash 中测试一下:
trace(Math.sin(30));
转 <wbr>第三章 <wbr>三角学应用(1)(as3.0)

图 3-8 角的正弦值为对边/斜边
    输出结果为 –0.988031624092862, 为什么会这样,能够找出原因吗?这是因为我们忘
记了将结果转换为弧度制。我敢说你以后会常犯这种错误(我也一样),所以一定要小心。
以下是正确的写法:
trace(Math.sin(30 * Math.PI / 180));
成功!输出 0.5
    还可能得到 0.4999… 这样的值, 这并不是程序的错误, 而是由于二进制计算机常以浮
点形式表示数值。但这个值已经非常接近了,所以就认为它等于 0.5。
可以把一个三角形想象为角度为 30,两条边长分别为 1 和 2,然后把它移到普通坐标系中,
不要忘了, Flash 坐标系的 Y 轴向下,角度是顺时针的。所以,对边和角度都是相反的.

因此,比例也变成了-1/2,我们就称它为-30 度角的正弦值。同时,把表达式改为:
trace(Math.sin(-30 * Math.PI / 180));
    好的,不会很痛苦吧?下面再来看一个三角函数:余弦。
余弦(Cosine)
    在 Flash 中,使用 Math.cos(angle) 就可以计算余弦值,余弦的定义为角的邻边与斜
边之比。

反正弦(Arcsine)和反余弦(Arccosine)
    与正切相似,反正弦和反余弦在一般的 Flash 动画中很少使用。然而,我们还是要学
习一下它们的用法,实际上就是正弦和余弦函数的反函数。   换句话讲,就是输入一个比例值,
返回一个角度值(以弧度表示)。
    在 ActionScript 函数中记作 Math.asin(ratio) 和 Math.acos(ratio)。下面让来测
试一下,我们已经知道 30 度角的正弦值为 0.5,所以 0.5 的反正弦值应为 30 度,检验一下:
trace(Math.asin(0.5) * 180 / Math.PI);
别忘记将结果转换为角度制,才能得到角度制 30 度,而不是弧度制 0.523。
我们知道,30 度角的余弦值大约为 0.865,下面以同样的方法来测试一下:
trace(Math.acos(0.865) * 180 / Math.PI);
    得到结果为 30.1172947473221。 如果把 30 度的余弦值输入得更准确, 那么所得的结果
也会更为精确。怎么样,不难吧?

阅读更多
个人分类: Flash Flex
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭