flink(1)下载和启动

## 下载和启动

  1. 安装flink需要java 8.x的环境,因此我们首先需要检查java 8是否已安装,可以通过java -version检查。

  2. 下载安装包

    可以在https://flink.apache.org/downloads.html 下载对应的版本,此次我们下载 Apache Flink 1.7.2 for Scala 2.11 (asc, sha512)。

    下载后解压即可。

    $ cd ~/Downloads        # Go to download directory
    $ tar xzf flink-*.tgz   # Unpack the downloaded archive
    $ cd flink-1.7.2
    
  3. 启动flink

    $ ./bin/start-cluster.sh  # Start Flink
    

    默认是单机版,启动后我们可以访问http://localhost:8081,如果页面访问正常,我们可以看到有一个可用的TaskManager实例。

    我们也可以通过$ tail log/flink-*-standalonesession-*.log 检查启动日志,确认是否启动成功。

  4. 运行

    我们使用如下java代码来测试flink功能,这个任务会从socket中读取文本信息,每隔5秒统计一次每个词出现的次数。

    public class SocketWindowWordCount {
    
        public static void main(String[] args) throws Exception {
    
            // the port to connect to
            final int port;
            try {
                final ParameterTool params = ParameterTool.fromArgs(args);
                port = params.getInt("port");
            } catch (Exception e) {
                System.err.println("No port specified. Please run 'SocketWindowWordCount --port <port>'");
                return;
            }
    
            // get the execution environment
            final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    
            // get input data by connecting to the socket
            DataStream<String> text = env.socketTextStream("localhost", port, "\n");
    
            // parse the data, group it, window it, and aggregate the counts
            DataStream<WordWithCount> windowCounts = text
                .flatMap(new FlatMapFunction<String, WordWithCount>() {
                    @Override
                    public void flatMap(String value, Collector<WordWithCount> out) {
                        for (String word : value.split("\\s")) {
                            out.collect(new WordWithCount(word, 1L));
                        }
                    }
                })
                .keyBy("word")
                .timeWindow(Time.seconds(5), Time.seconds(1))
                .reduce(new ReduceFunction<WordWithCount>() {
                    @Override
                    public WordWithCount reduce(WordWithCount a, WordWithCount b) {
                        return new WordWithCount(a.word, a.count + b.count);
                    }
                });
    
            // print the results with a single thread, rather than in parallel
            windowCounts.print().setParallelism(1);
    
            env.execute("Socket Window WordCount");
        }
    
        // Data type for words with count
        public static class WordWithCount {
    
            public String word;
            public long count;
    
            public WordWithCount() {}
    
            public WordWithCount(String word, long count) {
                this.word = word;
                this.count = count;
            }
    
            @Override
            public String toString() {
                return word + " : " + count;
            }
        }
    }
    

    由于需要监听端口,我们需要启动一个tcp服务。`

    $ nc -l 9000
    

    第二步,提交flink程序。

    $ ./bin/flink run examples/streaming/SocketWindowWordCount.jar --port 9000

    提交的程序会连接到9000端口并监听输入。

    $ nc -l 9000
    lorem ipsum
    ipsum ipsum ipsum
    bye
    

    代码中我们使用print直接输出,因此我们可以通过日志文件查看结果:

    $ tail -f log/flink-*-taskexecutor-*.out
    lorem : 1
    bye : 1
    ipsum : 4
    
    1. 停止flink

      $ ./bin/stop-cluster.sh

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值