max-min 不等式(minimax inequality)

在一篇鲁棒优化相关的论文中,看到了 minimax inequality,又称作 max-min 不等式。查了一下,原来在拉格朗日对偶中应用过,写篇博客总结一下。

对于任意函数: f : X × Y → R f:X\times Y\rightarrow\mathbb{R} f:X×YR

sup ⁡ x ∈ X inf ⁡ y ∈ Y f ( x , y ) ≤ inf ⁡ y ∈ y sup ⁡ x ∈ X f ( x , y ) \sup_{x\in X} \inf_{y\in Y}f(x,y)\leq \inf_{y\in y}\sup_{x\in X} f(x,y) xXsupyYinff(x,y)yyinfxXsupf(x,y)

其中, x x x y y y 都可以是向量,上面的式子也可以写成 max 或 min 形式:

max ⁡ x ∈ X min ⁡ y ∈ Y f ( x , y ) ≤ min ⁡ y ∈ y max ⁡ x ∈ X f ( x , y ) \max_{x\in X} \min_{y\in Y}f(x,y)\leq \min_{y\in y}\max_{x\in X} f(x,y) xXmaxyYminf(x,y)yyminxXmaxf(x,y)

证明过程稍微有点绕,但比较简洁,
证明:

对 于   ∀ x , ∀ y , 有 min ⁡ y ∈ Y f ( x , y ) ≤ f ( x , y ) ⇒ 对 于   ∀ y , 有 max ⁡ x ∈ X min ⁡ y ∈ Y f ( x , y ) ≤ max ⁡ x ∈ X f ( x , y ) ⇒ max ⁡ x ∈ X min ⁡ y ∈ Y f ( x , y ) ≤ min ⁡ y ∈ y max ⁡ x ∈ X f ( x , y ) □ 对于~\forall x, \forall y, 有 \min_{y\in Y}f(x,y) \leq f(x,y)\\ \Rightarrow 对于~\forall y, 有\max_{x\in X} \min_{y\in Y}f(x,y) \leq \max_{x\in X} f(x,y)\\ \Rightarrow \max_{x\in X} \min_{y\in Y}f(x,y)\leq \min_{y\in y}\max_{x\in X} f(x,y) \qquad \Box  x,y,yYminf(x,y)f(x,y) y,xXmaxyYminf(x,y)xXmaxf(x,y)xXmaxyYminf(x,y)yyminxXmaxf(x,y)

注:还有一个 max-min 定理,在鞍点处,不等式取等号。

这个 max-min 不等式也可以根据拉格朗日弱对偶定理直接得出来。1
2


  1. https://en.wikipedia.org/wiki/Minimax_theorem ↩︎

  2. https://en.wikipedia.org/wiki/Max%E2%80%93min_inequality ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心态与习惯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值