以前优化函数时的决策目标总是: min 或 max。最近读论文时,发现不少高质量的论文中总是写成: inf 或 sup。
inf 是 infimum 的简称,sup 是 supremum 的简称。
例如函数:
f
(
x
)
=
sin
(
x
)
/
x
f(x)=\sin(x)/x
f(x)=sin(x)/x 的图像:
该函数在
x
=
0
x=0
x=0 处没有值,因此其最大值即 max 不存在,但是我们可以看出
f
(
x
)
f(x)
f(x) 最小的上界为 1(不小于它最大值的值,都是它的上界),即
sup
f
(
x
)
=
1
\sup f(x)=1
supf(x)=1。
sup 的定义:一个集合最小的上界
inf 的定义:一个集合最大的下界