凸函数的局部最优也是全局最优的证明

这个性质早就知道了,但并不太清楚严谨的证明是什么。这也是《Introduction to linear optimization》书中第三章课后题的第一题。这篇博客给出严谨的证明。

Exercise 3.1 (Local minimum of convex functions)

Let f : R n → R f: \mathcal{R}^n \rightarrow \mathcal{R} f:RnR be a convex function and let S ∈ R n S \in \mathcal{R}^n SRn be a convex set. Let x ∗ x^\ast x be an element of S S S. Suppose that x ∗ x^\ast x is a local optimum for the problem of minimizing f ( x ) f(x) f(x) over S S S; that is, there exists some ϵ > 0 \epsilon>0 ϵ>0 such that f ( x ∗ ) ≤ f ( x ) f(x^\ast)\leq f(x) f(x)f(x) for all x ∈ S x\in S xS for which ∣ x − x ∗ ∣ ≤ ϵ |x - x^\ast|\leq \epsilon xxϵ. Prove that x ∗ x^\ast x is globally optimal; that is, f ( x ∗ ) ≤ f ( x ) f(x^\ast)\leq f(x) f(x)f(x) for all x ∈ S x\in S xS.


Solution:

We prove this problem by contradiction (反证法).

Proof.

Suppose that there exists a point x 0 ∈ S x_0\in S x0S in which f ( x 0 ) < f ( x ∗ ) f(x_0)<f(x^\ast) f(x0)<f(x). Since f ( x ) f(x) f(x) is a convex function, for any λ ∈ [ 0 , 1 ] \lambda\in [0,1] λ[0,1],

f ( λ x ∗ + ( 1 − λ ) x 0 ) ≤ λ f ( x ∗ ) + ( 1 − λ ) f ( x 0 ) . f(\lambda x^\ast + (1-\lambda)x_0)\leq \lambda f(x^\ast) + (1-\lambda )f(x_0). f(λx+(1λ)x0)λf(x)+(1λ)f(x0).

Since f ( x 0 ) < f ( x ∗ ) f(x_0)<f(x^\ast) f(x0)<f(x),

f ( λ x ∗ + ( 1 − λ ) x 0 ) < λ f ( x ∗ ) + ( 1 − λ ) f ( x ∗ ) = f ( x ∗ ) . f(\lambda x^\ast + (1-\lambda)x_0)< \lambda f(x^\ast) + (1-\lambda )f(x^\ast)=f(x^\ast). f(λx+(1λ)x0)<λf(x)+(1λ)f(x)=f(x).

We can find a λ \lambda λ that makes λ x ∗ + ( 1 − λ ) x 0 \lambda x^\ast + (1-\lambda)x_0 λx+(1λ)x0 locates at the neighbourhood of x ∗ x^\ast x, i.e.,
x ∗ − ϵ ≤ λ x ∗ + ( 1 − λ ) x 0 ≤ x ∗ + ϵ ; x^\ast-\epsilon\leq\lambda x^\ast + (1-\lambda)x_0\leq x^\ast+\epsilon; xϵλx+(1λ)x0x+ϵ;

i.e., we can make λ \lambda λ satisfies:

− ϵ ≤ ( 1 − λ ) ( x ∗ − x 0 ) ≤ ϵ ; -\epsilon\leq(1-\lambda)(x^\ast-x^0)\leq \epsilon; ϵ(1λ)(xx0)ϵ;

i.e., we can make λ \lambda λ satisfies:
1 − λ ≤ ϵ ∣ x 0 − x ∗ ∣ . 1-\lambda\leq \frac{\epsilon}{|x_0-x^\ast|}. 1λx0xϵ.

This λ \lambda λ does exist, so there will exists a point in the neigourhood of x ∗ x^\ast x but its function value is smaller than f ( x ∗ ) f(x^\ast) f(x), which contradicts that x ∗ x^\ast x is a local minimum.

□ \Box

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心态与习惯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值