收敛速度:线性收敛,超线性收敛,r 阶收敛

最优化理论中,评价一个算法的收敛速度有两个衡量尺度,Q-收敛与 R-收敛,我们一般用到的是 Q-收敛,它包括:线性收敛,超线性收敛,r 阶收敛。

一、 Q-收敛

设相邻两个迭代点:x_(k+1), x_{k}, 最优值点 x*,若存在实数 q>0,满足:

\begin{equation}\lim\limits_{k\rightarrow\infty}\frac{\|x_{k+1}-x^{*}\|}{\|x_{k}-x^{*}\|}=q\end{equation}

1. 若 0<q<1,则表示算法线性收敛

2. 若 q=1,则表示算法线性收敛

3. 若 q=0,则表示算法超线性收敛,  并且在超线性收敛时:由于

 \begin{align}\lim_{k\rightarrow\infty}\frac{\|x_{k+1}-x_{k}\|}{\|x^{k}-x_{\ast}\|}=\lim_{k\rightarrow\infty}\frac{\|x_{k+1}-x^{\ast}+x^{\ast}-x^{k}\|}{\|x_{k}-x_{\ast}\|}&\leq \lim_{k\rightarrow\infty}\frac{\|x_{k+1}-x_{\ast}\|+\|x_{\ast}-x^{k}\|}{\|x_{k}-x_{\ast}\|}\\
 &=\lim_{k\rightarrow\infty}\frac{\|x_{k+1}-x_{\ast}  \|}{\|x_{k}-x^{\ast}\|}+1\leq 1\end{align}
 并且 

\begin{align}\lim_{k\rightarrow\infty}\frac{\|x_{k+1}-x_{k}\|}{\|x^{k}-x_{\ast}\|}=\lim_{k\rightarrow\infty}\frac{\|x_{k+1}-x^{\ast}+x^{\ast}-x^{k}\|}{\|x_{k}-x_{\ast}\|}\geq& \lim_{k\rightarrow\infty}\left|\frac{\|x_{k+1}-x_{\ast}\|-\|x_{\ast}-x^{k}\|}{\|x_{k}-x_{\ast}\|}\right|\\\geq &\left|0-1\right|=1\end{align}
 注:利用到了二范数的性质

\begin{equation}\|a\pm b\|\geq\Big|\|a\|-\|b\|\Big|\end{equation}
 因此:
 \begin{equation}\lim_{k\rightarrow\infty}\frac{\|x_{k+1}-x_{k}\|}{\|x^{k}-x_{\ast}\|}=1\end{equation}

4. 若

\begin{equation}\lim\limits_{k\rightarrow\infty}\frac{\|x_{k+1}-x^{*}\|}{\|x_{k}-x^{*}\|^{r}}=q\end{equation}

并且 r>=1, 0<=q< ∞, 则称算法 r 阶收敛

若 r>1, r 阶收敛必为超线性收敛。(证明略去)

二、R-收敛

R-收敛借助一个收敛于零的数列来度量 ||x_k-x^\ast|| 趋于零的速度,设点列 \{x_k\} 收敛到最优值点 x^\ast. 若存在 m\in(0, \infty)q\in(0, 1),使

||x_k-x^\ast||\leq mq^k

则称 \{x_k\} R-线性收敛到 x^\ast. 若:

||x_k-x^\ast||\leq m\Pi_{i=0}^kq_i

  则称 \{x_k\} R-超线性收敛到 x^\ast

参考资料:王宜举,修乃华《非线性最优化理论与方法》,科学出版社

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心态与习惯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值