python 生成随机数的三种方法

本文详细介绍如何使用Python的random、numpy及scipy包生成各种分布的随机数,包括均匀分布、正态分布、泊松分布等,并提供实例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 使用 random 包生成随机数

可以生成
均匀分布,
高斯分布,(包括正态分布)
指数分布,(与泊松分布有区别:泊松分布表示一段时间发生多少次,而指数分布表示两次发生的时间间隔)
贝塔分布,
韦布尔分布的随机数

由此可见,random 包支持的随机分布比较有限,功能较少.

例如:
(1) 生成 [1, 10] 内的均匀分布随机数

import random
random.uniform(1, 10)

(2) 生成 [1, 10] 内的随机整数

random.randint(1, 10)

(3) 生成一个正态分布的随机数,均值为 5, 标准差为 1

random.gauss(5, 1)

(4) 生成一个指数分布的随机数,均值为 5

 random.expovariate(0.2)
Out[37]: 4.670169382329602

2. 使用 numpy 包生成随机数

numpy 包的 random 方法基本支持所有分布,并且能够一次生成多行多列的随机数.

例如:
(1) 生成 [1, 10] 内的均匀分布随机数, 2 行 2 列

import numpy as np
np.random.uniform(1, 10, [2,2])

(2) 生成 [1, 10] 内的随机整数, 2 行 2 列

np.random.randint(1, 10, [2,2])

(3) 生成一个正态分布的随机数,均值为 5, 标准差为 1, 2 行 2 列

np.random.normal(5, 1, [2,2])

(4) 生成一个泊松分布的随机数,均值为 5, 2 行 2 列

np.random.poisson(5, [2,2])

(4) 生成一个指数分布的随机数,均值为 5, 2 行 2 列

np.random.exponential(5, [2,2])
2.1 通过 random.seed() 参数设定随机数生成器的种子

numpy 还可以通过 random.seed() 参数设定随机数生成器的种子,同样的种子生成的随机数应该是相同的。

np.random.seed(500)
np.random.normal(5, 1, 6) # 生成 6 个正态分布的随机数,均值为 5, 标准差为 1

这样每次运行的输出结果都是
array([4.62263642, 5.16675892, 5.68280238, 6.92137877, 4.8029632 ,
4.24012124])

2.2 通过 RandomState() 设置随机数生成器

另外 numpy 还可以通过 RandomState() 来定义一个随机数生成器对象,小括号里面的参数为随机数种子,然后用这个对象调用具体的各个随机分布生成器函数。例如:

rvs = np.random.RandomState(500)
rvs.normal(5, 1, 6) # 生成 6 个正态分布的随机数,均值为 5, 标准差为 1

3. 使用 scipy 包生成随机数

用 scipy 包不同分布函数自带的 rvs 生成随机数,例如,生成一个正态分布的 2 行 2 列随机数,均值为 5, 标准差为 1:

import scipy.stats as st
st.norm.rvs(loc=5, scale=1, size=[2,2])

生成一个泊松分布的 2 行 2 列随机数,均值为 5:

st.poisson.rvs(mu=5, size=[2,2])
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心态与习惯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值