两个不平行的
n
n
n 维向量
a
1
a_1
a1 与
a
2
a_2
a2 可以生成一个平面,那么怎么用一组方程方程表示这个平面
S
S
S 呢?答案如下:
S
=
{
x
∣
v
i
T
x
=
0
,
i
=
1
,
2
,
…
,
n
−
2
}
S=\{x\mid v^T_ix=0, ~~i=1,2,\dots,n-2\}
S={x∣viTx=0, i=1,2,…,n−2}
其中 v i v_i vi 是与 a 1 a_1 a1 与 a 2 a_2 a2 不相关且与它们正交 的向量,一共有 n − 2 n-2 n−2 个1。
Convex Optimization, Steve Boyd ↩︎