音频数据集大全(1)-语音识别篇

1、Llama3 中文化数据集

简介:Llama3 中文化数据集是为了提高Llama3模型在中文语境下的表现而专门设计和准备的数据集。数据集被处理成firefly格式,这意味着它们可以直接用于firefly框架的训练过程。数据集包含了清洗处理后的合并文件,如sft_zh_with_all.jsonl,它包含了约169万条过滤后的问答数据提供了多种下载方法,包括使用SDK和GIT克隆。SDK方法允许用户通过几行代码快速下载所需的数据集,而GIT方法则适用于希望直接从源代码仓库克隆数据集的用户

下载链接:https://github.com/CrazyBoyM/llama3-Chinese-chat

2、中文语音识别Aishell-1学术数据集

简介:希尔贝壳中文普通话开源语音数据库AISHELL-ASR0009-OS1录音时长178小时,是希尔贝壳中文普通话语音数据库AISHELL-ASR0009的一部分。AISHELL-ASR0009录音文本涉及智能家居、无人驾驶、工业生产等11个领域。录制过程在安静室内环境中, 同时使用3种不同设备: 高保真麦克风(44.1kHz,16-bit);Android系统手机(16kHz,16-bit);iOS系统手机(16kHz,16-bit)。高保真麦克风录制的音频降采样为16kH

在选择语音技术数据集时,首先需要明确模型的应用场景和目标受众。考虑到多语言和方言的覆盖,以下是几个关键的考虑因素以及推荐的数据集: 参考资源链接:[智能语音技术:数据集详解与资源链接](https://wenku.csdn.net/doc/2rfa48jifh?spm=1055.2569.3001.10343) 1. 多语言支持:如果模型需要支持多语言,那么选择包含多种语言的大型数据集至关重要。例如,CMU Wilderness Multilingual Speech Dataset就包含了超过700种语言的语音数据,是覆盖语言多样性的理想选择。它能够帮助模型理解并识别多种语言,提高其在全球化环境中的应用能力。 2. 方言和口音多样性:对于特定地区或国家内的应用,方言和口音的多样性同样重要。KeSpeech数据集聚焦于中国普通话及其方言,它提供了丰富的语音样本,有助于提高模型对中国用户语音的识别准确率。 3. 数据质量和量:高质量的语音数据集应包含清晰的录音、准确的标注和多样的发音环境。同时,足够大的数据量可以提供丰富的训练样本,减少过拟合的风险,提高模型的泛化能力。 4. 数据集的更新频率和社区支持:选择活跃的数据集,社区中活跃的开发者和研究人员能够提供持续的更新和支持,这对于语音识别模型的持续改进和优化非常有帮助。 综合考虑以上因素,推荐的组合为CMU Wilderness Multilingual Speech Dataset和KeSpeech数据集。这样的组合能够在多语言支持和方言多样性上提供充足的训练材料,帮助构建出既精准又具有广泛适应性的语音识别模型。对于希望深入了解数据集选择和语音识别技术的读者,可以参考《智能语音技术:数据集详解与资源链接》这本书,它提供了详尽的数据集分类和相关资源链接,是学习和应用智能语音技术不可或缺的资源。 参考资源链接:[智能语音技术:数据集详解与资源链接](https://wenku.csdn.net/doc/2rfa48jifh?spm=1055.2569.3001.10343)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值