华容道游戏c#最简破解

华容道游戏的暴力破解是少年时候的梦想,那时候刚学电脑basic,也刚知道华容道这个游戏,就想拿电脑去破解这个游戏。很可惜那时候太年轻,basic也太弱,没有能成功。
前几天做网页爬虫,用到广度搜索,突然想到儿时的梦想,于是花了2天时间来实现。

在现代语言面前,要实现这个只需要1百多行代码,不需要递归,只需要简单的迭代
要点
1.需要采用广度搜索
2.需要去重复(剪枝)
3.穷举下一步的各种可能性
4.迭代

主要代码很简单,解题只有3个函数,可以说是目前最简单的破解程序了。

Scan主函数。终点判断,穷举移动棋子,迭代
Move

移动棋子,这个效率或许不高,但应该是最简洁的。不用考虑棋子的形状,所有棋子一视同仁,按照位图的方式来移动,这样大大简化了移动判断,不管是曹操,还是横将竖将小兵,移动的方式是一样的,一个点一个点移动。

IsDuplicate

判重,包含去掉相似布局和镜像布局。使用HashSet类,大大简化代码。在Move里面调用可以少产生无用数据

Print回溯解题过程,打印解题结果的每一步棋盘

破解时间在I7上只要70毫秒,进一步优化已经没有意义。并且不想过度优化而降低可读性,方便移植到各种语言。
棋盘用长度20的字符串来表示,处理起来很简单。
  1.             string initMap =  
  2.                  "1223" +  
  3.                  "1223" +  
  4.                  "4556" +  
  5.                  "4786" +  
  6.                  "9  0";  
你也许没有想到大名鼎鼎的华容道用100多行代码就写出来了,如此简单。虽然代码简单,但里面包含的道理却不少。只是.net的List类和HashSet类帮我们完成了大部分的工作。
只要实现List类和HashSet类就可以移植到各种语言,在javascript等动态语言里,用数组就可以实现

运行时间



using System;
using System.Collections.Generic;
using System.Text;


namespace Hrd
{
    class Node
    {
        public string map;
        public int parent;
        public Node(string map,int parent)
        {
            this.map = map;
            this.parent = parent;
        }
    }
    class Huarongdao
    {
        //已经走过地图类型(去重复用)
        HashSet<string> history = new HashSet<string>();
        //每一步的所有走法(走到终点回溯上一步用,如果只求步数则可以不要)
        List<List<Node>> allNodes = new List<List<Node>>();
        //下一步各种走法节点
        List<Node> nextList;


        int index;
        enum Direct{
            Left = -1,
            Right = 1,
            Up = -4,
            Down =4
        }
        public Huarongdao()
        {
        }
        void Move(Direct dir,string map, char ch, bool first = true) {
            StringBuilder work= new StringBuilder(map);
            work.Replace(ch, ' ');


            for (int i = 0; i < 20; i++)
            {
                if (map[i] == ch)
                {
                    int pos = i + (int)dir;
                    int x = i % 4;


                    if (dir == Direct.Left  && x == 0 ||
                        dir == Direct.Right && x == 3 ||
                        pos < 0 || pos >= 20) return;


                    if (work[pos] != ' ') return;
                    work[pos] = ch;
                }
            }
            string _work = work.ToString();
            //重复检查
            if (IsDuplicate(_work)) return;
            //加入下一步,记录父节点
            nextList.Add(new Node(_work, index));
            if (first)
            {
                //试着走第二步,但不能退回
                if (dir != Direct.Right) Move(Direct.Left, _work, ch, false);
                if (dir != Direct.Left) Move(Direct.Right, _work, ch, false);
                if (dir != Direct.Down) Move(Direct.Up, _work, ch, false);
                if (dir != Direct.Up) Move(Direct.Down, _work, ch, false);
            }
        }
        bool IsDuplicate(string map)
        {
            StringBuilder layout = new StringBuilder(map);
            //相似的形状统一成一种,去重复
            layout.Replace('3', '1').Replace('4', '1').Replace('6', '1').Replace('7', '0').Replace('8', '0').Replace('9', '0');


            if (!history.Add(layout.ToString())) return true;


            //左右镜像(大约节约1/2时间),去重复
            StringBuilder reverse = new StringBuilder(layout.ToString());
            for (int k = 0; k < 20; k++)
            {
                int x = 3 - (k % 4);
                int y = k / 4;
                reverse[y * 4 + x] = layout[k];
            }
            if (history.Contains(reverse.ToString())) return true;


            return false;
        }
        void Print(int index)
        {
            List<string> outList = new List<string>();
            int parent = index;
            for (int level = allNodes.Count-1; level >= 0; level--)
            {
                string outMap = allNodes[level][parent].map;
                parent = allNodes[level][parent].parent;
                outList.Add(outMap);
            }
            int cnt = 0;
            for (int j = outList.Count - 1; j >= 0; j--)
            {
                Console.WriteLine("--------------------------" + cnt++);
                for (int y = 0; y < 5; y++)
                {
                    Console.WriteLine(outList[j].Substring(y * 4, 4));
                }
            }
        }
        public void Scan()
        {
            string initMap =
                 "1223" +
                 "1223" +
                 "4556" +
                 "4786" +
                 "9  0";
            List<Node> curList = new List<Node> { new Node(initMap, 0) };


            DateTime begin = DateTime.Now;
            //迭代直到无路可走
            while (curList.Count>0)
            {
                //记录每一步
                allNodes.Add(curList);


                nextList = new List<Node>();
                for(index = 0; index < curList.Count; index++)
                {
                    string map = curList[index].map;
                    //到达终点的判断
                    if (map[4 * 4 + 1] == '2' && map[4 * 4 + 2] == '2')
                    {
                        Console.WriteLine("time:"+ (DateTime.Now - begin));
                        Print(index);
                        return;
                    }
                    //穷举各种可能性,去重复,加入到下一步的节点
                    for (char ch = '0'; ch <= '9'; ch++)
                    {
                        Move(Direct.Left,map, ch);
                        Move(Direct.Right, map, ch);
                        Move(Direct.Up, map, ch);
                        Move(Direct.Down, map, ch);
                    }
                }
                //迭代
                curList = nextList;
            }
            Console.WriteLine("无解");
        }
    }
}
下面是运行结果

--------------------------0
1223
1223
4556
4786
9  0
--------------------------1
1223
1223
4556
4786
9 0 
--------------------------2
1223
1223
455 
4786
9 06
--------------------------3
1223
1223
4 55
4786
9 06
--------------------------4
1223
1223
4 55
4 86
9706
--------------------------5
1223
1223
 455
 486
9706
--------------------------6
1223
1223
 455
9486
 706
--------------------------7
1223
1223
 455
9486
7 06
--------------------------8
1223
1223
  55
9486
7406
--------------------------9
1223
1223
55  
9486
7406
--------------------------10
1223
1223
55 8
94 6
7406
--------------------------11
1223
1223
5508
94 6
74 6
--------------------------12
1223
1223
5508
9 46
7 46
--------------------------13
1223
1223
5508
  46
7946
--------------------------14
1223
1223
  08
5546
7946
--------------------------15
1223
1223
0  8
5546
7946
--------------------------16
1223
1223
08  
5546
7946
--------------------------17
1223
1223
084 
5546
79 6
--------------------------18
1223
1223
0846
5546
79  
--------------------------19
1223
1223
0846
5546
7  9
--------------------------20
1223
1223
0846
5546
  79
--------------------------21
1223
1223
0846
  46
5579
--------------------------22
1223
1223
0 46
8 46
5579
--------------------------23
1223
1223
04 6
84 6
5579
--------------------------24
1223
1223
046 
846 
5579
--------------------------25
122 
122 
0463
8463
5579
--------------------------26
1 22
1 22
0463
8463
5579
--------------------------27
 122
 122
0463
8463
5579
--------------------------28
0122
 122
 463
8463
5579
--------------------------29
0122
8122
 463
 463
5579
--------------------------30
0122
8122
4 63
4 63
5579
--------------------------31
0 22
8 22
4163
4163
5579
--------------------------32
022 
822 
4163
4163
5579
--------------------------33
0223
8223
416 
416 
5579
--------------------------34
0223
8223
41 6
41 6
5579
--------------------------35
0223
8223
4176
41 6
55 9
--------------------------36
0223
8223
4176
4196
55  
--------------------------37
0223
8223
4176
4196
  55
--------------------------38
0223
8223
4 76
4196
 155
--------------------------39
0223
8223
  76
4196
4155
--------------------------40
0223
8223
7  6
4196
4155
--------------------------41
0  3
8223
7226
4196
4155
--------------------------42
  03
8223
7226
4196
4155
--------------------------43
 803
 223
7226
4196
4155
--------------------------44
7803
 223
 226
4196
4155
--------------------------45
7803
4223
4226
 196
 155
--------------------------46
7803
4223
4226
1 96
1 55
--------------------------47
7803
4223
4226
1  6
1955
--------------------------48
7803
4  3
4226
1226
1955
--------------------------49
78 3
40 3
4226
1226
1955
--------------------------50
783 
403 
4226
1226
1955
--------------------------51
7836
4036
422 
122 
1955
--------------------------52
7836
4036
4 22
1 22
1955
--------------------------53
7836
4 36
4022
1 22
1955
--------------------------54
7 36
4836
4022
1 22
1955
--------------------------55
 736
4836
4022
1 22
1955
--------------------------56
4736
4836
 022
1 22
1955
--------------------------57
4736
4836
1022
1 22
 955
--------------------------58
4736
4836
1022
1 22
9 55
--------------------------59
4736
4836
1 22
1 22
9055
--------------------------60
4736
4836
122 
122 
9055
--------------------------61
473 
483 
1226
1226
9055
--------------------------62
47 3
48 3
1226
1226
9055
--------------------------63
4 73
48 3
1226
1226
9055
--------------------------64
4 73
4 83
1226
1226
9055
--------------------------65
 473
 483
1226
1226
9055
--------------------------66
1473
1483
 226
 226
9055
--------------------------67
1473
1483
22 6
22 6
9055
--------------------------68
1473
14 3
22 6
2286
9055
--------------------------69
14 3
14 3
2276
2286
9055
--------------------------70
143 
143 
2276
2286
9055
--------------------------71
1436
1436
227 
228 
9055
--------------------------72
1436
1436
2278
22  
9055
--------------------------73
1436
1436
2278
2255
90  
--------------------------74
1436
1436
2278
2255
9  0
--------------------------75
1436
1436
2278
2255
  90
--------------------------76
1436
1436
  78
2255
2290
--------------------------77
1436
1436
7  8
2255
2290
--------------------------78
1436
1436
78  
2255
2290
--------------------------79
1436
1436
7855
22  
2290
--------------------------80
1436
1436
7855
22 9
22 0
--------------------------81
1436
1436
7855
 229
 220

                                    
©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值