机器学习
rocketeerLi
自由地努力着
展开
-
局部加权回归
总结一下对 CS229 第三讲中的局部加权回归。线性回归并不能拟合一些特殊的模型,比如,忽上忽下的训练集。当目标函数没有明显的线性关系时,使用线性回归训练出来的线性模型并不能进行很好地匹配。这个时候就可以利用我们的局部加权回归来进行拟合。什么是局部加权回归呢?简单地说,就是当目标函数的线性关系不是很明显时,每次预测一个输入变量 x 的值的时候,选择距离 x 最近的那些点进行建模。通常使用...原创 2018-10-03 14:33:30 · 510 阅读 · 0 评论 -
Logistic Regression(逻辑回归)
最近刚开始学习机器学习,想通过博客的方式写一些自己的理解。逻辑回归虽然称为回归,但它却是一个分类算法,一个用来解决二分类问题的算法,它通过将线性回归预测出的值映射到 {0,1} 上来实现分类的(0叫做负类,1叫做正类)。这是一个很简单的二分类算法,它的思想与线性回归很相似:原创 2018-10-06 20:17:05 · 620 阅读 · 0 评论 -
梯度下降、多元线性回归
本文介绍了机器学习中的多元线性回归模型和梯度下降,并利用梯度下降进行推导,是机器学习的基础。原创 2018-09-29 18:16:21 · 1605 阅读 · 0 评论 -
隐马尔可夫基本思想(HMM)
写在前面我在学习语音处理的时候,课上老师花了很大的精力给我们讲解 HMM 算法。然而当时没有认真听,直到快考试了,才去学。一直觉得 HMM 是一个很神奇的东西,但搞懂它的思想其实并不难。本文不讲算法,只为读者介绍 HMM 的基本思想。马尔科夫链开始,一定要明白马尔科夫链是个什么东西,这是理解 HMM 的基础。马尔科夫链是马尔科夫随机过程的特殊情况,它有两个参数——时间和状态,这两个参数都是...原创 2019-02-28 22:18:27 · 925 阅读 · 0 评论