Kafka(一)

Apache Kafka是一个分布式流平台。那么具体指什么?

一个流平台一般有三个功能:

1 发布和订阅消息流,类似于消息队列或者专业的消息系统。

2 以容错持久的方式存储消息流。

3 处理接收到的消息流。

Kafka一般广泛用于两类应用:

1 建立可以在系统或应用之间稳定获取数据的实时流数据通道。

2 建立转换货响应数据流的实时流应用。

为了搞清楚Kafka是怎么做到这些的,让我们自底向上的深入探索Kafka这些能力。

开始是一些概念:

1 Kafka是运行在可以扩展的多个数据中心集群上

2 Kafka集群存储了称为topics的分类流数据

3 每条记录都包含了key,value和时间戳

Kafka有四个核心的API:

Producer API允许应用发布流记录到一个或更多的Kafka主题上。

Consumer API允许应用订阅到一个或更多的主题上并处理其上的流记录。

Streams API允许应用作为流处理者,从一个或更多的主题上消费并且生产输出流到一个或更多的输出主题上,高效地传递输入流到输出流。

Connector API允许建立和运行可重用生产者或消费者,连接Kafka主题到已有的应用或数据系统中。比如,连接到关系型数据库上的connector可能捕捉到每个来自表的变化。

092612_eOK7_216330.png

在Kafka中,客户端和服务端的通信是简易,高可用,对语言不敏感的TCP协议。协议是分版本的并且向下兼容。我们不仅提供Kafka的Java客户端,还支持其他很多语言。

Topics和Logs

让我们先来看下Kafka为流记录提供的核心抽象的组件——topic

topic是记录发布的分类或饲养者。在Kafka中的topics总是多个订阅,意思是说topic可以没有,或者有一个或许多个消费者来订阅写入其中的数据。

对于每个topic来讲,Kafka集群保留了一个分区日志如下图:

092622_CMZd_216330.png

每个分区是一个有序的,不可变的向一个结构化的提交日志中持续写入记录的序列。在分区中的记录都被记作一串叫做offset的唯一标识的数字串。

Kafka集群持久化所有的发布的记录——不管他们是不是消费了——食用一个可配置的保留时间。举个例子,如果保留测试是两天,那么在记录发布之后的两天,它可以被重复消费,在这之后它将会被丢弃来节省空间。Kafka的性能相对于数据大小来说是有效的,所以长期存储数据不是问题。

092629_k9rJ_216330.png

事实上,只有保存在每个消费者上的元数据会在日志中成为offset或者消费者位置。offset(偏移)被消费者控制:一般消费者都会在读取记录的同时设置offset,但是,实际上,既然位置被消费者控制了那么消费者就可以按照顺序消费。比如一个消费者可以重置一个较早时间的offset去响应之前的记录或者跳转到最近的记录并从“现在”开始消费。

这样的特性意味着Kafka消费者是非常廉价的——他们可以不用受到集群或者其他消费者的影响。比如,他们可以使用命令行工具来“tail”任意topic的内容而无需改变已存在的消费者的消费内容。

日志中的分区有多种用途。首先,它们允许日志扩展到一个适合于单个服务器的大小。每个单独的分区必须适合承载它的服务器,但是一个topic可以有许多分区,因此可以处理任意数量的数据。其次,它们作为一个并行的单元——在这点上可以做到更多的事情。

分布式

日志分区是分布在Kafka集群中的每个服务器上,用来处理数据和共享分区的请求。每个分区通过一个可配置的容错机制的服务器的拷贝。

每个分区都有一个扮演这“leader”角色和多个(或无)扮演者“followers”角色的服务器。Leader处理所有的读和写请求,follwers被动地复制leader上的请求。如果leader发生宕机,一个follower会自动成为新的leader。每个leader服务器充当它所在分区的leader或者其他分区的follower,因此集群内的负载均衡很好。

Geo-Replication

Kafka镜像为它的集群提供geo-replication支持。通过景象,消息在多个数据中心或云中复制。你可以用在主动或被动的环境下备份或还原;或者覆盖邻近你的用户的数据,或者支持本地数据需求。

Producers

生产者根据自己的选择发布数据到topics上。生产者有权选择将记录发布到topic中的哪个分区上。这可以以轮询的方式简单的均衡负载或者根据一些语义上的分区函数(基于记录中的一些key)。由于秒级的建分区而被广泛使用。

Consumers

消费者把它们自己标记为消费者组名字,每个发布到topic上的记录都会被传送到消费者组中一个消费者实例。消费者实例可以在不同的进程或不同的机器上。

如果所有的消费者实例都在一个消费者组中,记录就会在消费者实例中实现高效的负载均衡。

如果所有的消费者实例在不同的消费者组中,则每个记录都会被广播到所有的消费者进程中。

一个包含两个Kafka服务器的集群使用了四个分区(P0-P3)和两个消费者组。消费者组A有两个消费者实例,消费者组B有四个。

更一般的是,你的topic拥有不多的consumer groups,每一个都充当“逻辑上的订阅者“。每个group都由很多消费者实例组成以便扩展和容错考虑。党消费者集群代替了单个进程的时候发布-订阅语义是再好不过的了。

在Kafka中实现消费的方法是将日志中的分区划分到消费者实例中,这样每个实例在任何时间点都是分区的“公平份额”的独占使用者。保持组里成员的地位是由Kafka的协议动态处理的。如果新实例加入了组它们会接管其他组成员的一些分区;如果一个实例死掉,他的分区就会分配给存在的实例。

Kafka只在一个分区中提供一个整体上有序的记录,而不会在topic的不同分区上存有这些记录。每个分区排序通过key和分区数据的能力结合对于大多数应用来说已经足够了。然而,如果你需要一个来自topic上唯一一个分区上整体上有序的记录,那么每个消费者组只有一个消费者进程。

 

以下是对提供的参考资料的总结,按照要求结构化多个要点分条输出: 4G/5G无线网络优化与网规案例分析: NSA站点下终端掉4G问题:部分用户反馈NSA终端频繁掉4G,主要因终端主动发起SCGfail导致。分析显示,在信号较好的环境下,终端可能因节能、过热保护等原因主动释放连接。解决方案建议终端侧进行分析处理,尝试关闭节电开关等。 RSSI算法识别天馈遮挡:通过计算RSSI平均值及差值识别天馈遮挡,差值大于3dB则认定有遮挡。不同设备分组规则不同,如64T和32T。此方法可有效帮助现场人员识别因环境变化引起的网络问题。 5G 160M组网小区CA不生效:某5G站点开启100M+60M CA功能后,测试发现UE无法正常使用CA功能。问题原因在于CA频点集标识配置错误,修正后测试正常。 5G网络优化与策略: CCE映射方式优化:针对诺基亚站点覆盖农村区域,通过优化CCE资源映射方式(交织、非交织),提升RRC连接建立成功率和无线接通率。非交织方式相比交织方式有显著提升。 5G AAU两扇区组网:与三扇区组网相比,AAU两扇区组网在RSRP、SINR、下载速率和上传速率上表现不同,需根据具体场景选择适合的组网方式。 5G语音解决方案:包括沿用4G语音解决方案、EPS Fallback方案和VoNR方案。不同方案适用于不同的5G组网策略,如NSA和SA,并影响语音连续性和网络覆盖。 4G网络优化与资源利用: 4G室分设备利旧:面对4G网络投资压减与资源需求矛盾,提出利旧多维度调优策略,包括资源整合、统筹调配既有资源,以满足新增需求和提质增效。 宏站RRU设备1托N射灯:针对5G深度覆盖需求,研究使用宏站AAU结合1托N射灯方案,快速便捷地开通5G站点,提升深度覆盖能力。 基站与流程管理: 爱立信LTE基站邻区添加流程:未提供具体内容,但通常涉及邻区规划、参数配置、测试验证等步骤,以确保基站间顺畅切换和覆盖连续性。 网络规划与策略: 新高铁跨海大桥覆盖方案试点:虽未提供详细内容,但可推测涉及高铁跨海大桥区域的4G/5G网络覆盖规划,需考虑信号穿透、移动性管理、网络容量等因素。 总结: 提供的参考资料涵盖了4G/5G无线网络优化、网规案例分析、网络优化策略、资源利用、基站管理等多个方面。 通过具体案例分析,展示了无线网络优化中的常见问题及解决方案,如NSA终端掉4G、RSSI识别天馈遮挡、CA不生效等。 强调了5G网络优化与策略的重要性,包括CCE映射方式优化、5G语音解决方案、AAU扇区组网选择等。 提出了4G网络优化与资源利用的策略,如室分设备利旧、宏站RRU设备1托N射灯等。 基站与流程管理方面,提到了爱立信LTE基站邻区添加流程,但未给出具体细节。 新高铁跨海大桥覆盖方案试点展示了特殊场景下的网络规划需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值