自然语言理解的实现方法

人类本来没有语言,但是脑子里有对周围的世界的认知,于是人们约定了特定的声音/文字表达特定的事物。自然语言的语法是约定俗成的,没有标准的语法格式。只要能用声音/文字的词语顺序表达自己头脑中的认知,然后在对方的头脑中构造这样的认知,自然语言的目的就达到了。
因为这个原因,所以我比较赞同模式匹配说。
我很想吐槽大数据挖掘等技术实现自然语言理解,这就好比给不懂德语的你一堆德语书,不查字典,不借助翻译工具,你最后能精通德语吗?如果我们人类都不行,计算机怎么行?做标注?不管怎么算法怎么生分割词语,生成句法,也都没有跟认知世界联系起来。很多歧义的句子仍不能正确理解。
解决方法是,用构造语义网络表达对世界的认知,用有序的词语映射到语义网络,并且特定词语和语义网络中特定元素对应。用有序的词语就是约定俗成的自然语言语法。这样多添加一种映射,计算机就能多理解一种语法。
用这种方法,实现算法不难,难的在于如何构造语义网络,如何组织自然语言语法。有人说这种方法不现实,其实自然语言的语法规则不是太多,汉语初步估计1000来条。后面我将陆续介绍。
网上自然语言理解的资料很少,欢迎留言阐述你的想法。

没有更多推荐了,返回首页