系列文章目录
提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加
例如:第一章 Python 机器学习入门之pandas的使用
提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
关键词
题目
1619.删除某些元素后的数组均值
提示:以下是本篇文章正文内容,下面案例可供参考
1.第一次(20220914)
案例:怎样从一个集合中获得最大或者最小的 N 个元素列表?
heapq 模块有两个函数:nlargest() 和 nsmallest() 可以完美解决这个问题。
import heapq
nums = [1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2]
print(heapq.nlargest(3, nums)) # Prints [42, 37, 23]
print(heapq.nsmallest(3, nums)) # Prints [-4, 1, 2]
1.1.Leetcode
from typing import List
import heapq
class Solution:
def trimMean(self, arr: List[int]) -> float:
return (sum(arr)-sum(heapq.nlargest(len(arr)//20,arr))-sum(heapq.nsmallest(len(arr)//20,arr)))/(len(arr)-(len(arr)//20)*2)
1.2.Pycharm
from typing import List
import heapq
class Solution:
def trimMean(self, arr: List[int]) -> float:
return (sum(arr)-sum(heapq.nlargest(len(arr)//20,arr))-sum(heapq.nsmallest(len(arr)//20,arr)))/(len(arr)-(len(arr)//20)*2)
#arr = [1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3]
#2.00000
#arr = [6,2,7,5,1,2,0,3,10,2,5,0,5,5,0,8,7,6,8,0]
#4.00000
#arr = [6,0,7,0,7,5,7,8,3,4,0,7,8,1,6,8,1,1,2,4,8,1,9,5,4,3,8,5,10,8,6,6,1,0,6,10,8,2,3,4]
#4.77778
#arr = [9,7,8,7,7,8,4,4,6,8,8,7,6,8,8,9,2,6,0,0,1,10,8,6,3,3,5,1,10,9,0,7,10,0,10,4,1,10,6,9,3,6,0,0,2,7,0,6,7,2,9,7,7,3,0,1,6,1,10,3]
#5.27778
#arr = [4,8,4,10,0,7,1,3,7,8,8,3,4,1,6,2,1,1,8,0,9,8,0,3,9,10,3,10,1,10,7,3,2,1,4,9,10,7,6,4,0,8,5,1,2,1,6,2,5,0,7,10,9,10,3,7,10,5,8,5,7,6,7,6,10,9,5,10,5,5,7,2,10,7,7,8,2,0,1,1]
#输出:5.29167
#print(Solution.trimMean('',arr))
1.3.结果
2.第二次(20220914)
2.1.Leetcode
from typing import List
import heapq
class Solution:
def trimMean(self, arr: List[int]) -> float:
M = len(arr)
m = len(arr)//20
arr.sort()
#print(arr)
arr = arr[m:M-m]
#print(arr)
return sum(arr)/(M-2*m)
2.2.Pycharm
from typing import List
class Solution:
def trimMean(self, arr: List[int]) -> float:
M = len(arr)
m = len(arr)//20
arr.sort()
#print(arr)
arr = arr[m:M-m]
#print(arr)
return sum(arr)/(M-2*m)
#arr = [1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3]
#2.00000
#arr = [6,2,7,5,1,2,0,3,10,2,5,0,5,5,0,8,7,6,8,0]
#4.00000
#arr = [6,0,7,0,7,5,7,8,3,4,0,7,8,1,6,8,1,1,2,4,8,1,9,5,4,3,8,5,10,8,6,6,1,0,6,10,8,2,3,4]
#4.77778
#arr = [9,7,8,7,7,8,4,4,6,8,8,7,6,8,8,9,2,6,0,0,1,10,8,6,3,3,5,1,10,9,0,7,10,0,10,4,1,10,6,9,3,6,0,0,2,7,0,6,7,2,9,7,7,3,0,1,6,1,10,3]
#5.27778
#arr = [4,8,4,10,0,7,1,3,7,8,8,3,4,1,6,2,1,1,8,0,9,8,0,3,9,10,3,10,1,10,7,3,2,1,4,9,10,7,6,4,0,8,5,1,2,1,6,2,5,0,7,10,9,10,3,7,10,5,8,5,7,6,7,6,10,9,5,10,5,5,7,2,10,7,7,8,2,0,1,1]
#输出:5.29167
print(Solution.trimMean('',arr))