打卡信奥刷题(1333)用C++实现信奥 B3695 集合运算 3

B3695 集合运算 3

题目背景

关于集合、交集、并集的定义请参考 https://www.luogu.com.cn/problem/B3633。

以下给出对称差的定义:

对两个集合 A , B A, B A,B,规定 A A A B B B 的对称差 A Δ B A \Delta B AΔB 为在 A A A 中出现但不在 B B B 中出现,或在 B B B 中出现但不在 A A A 中出现的元素。
例如, A = { 1 , 2 , 3 } A = \{1, 2, 3\} A={1,2,3} B = { 2 , 3 , 5 } B = \{2, 3, 5\} B={2,3,5},则 A Δ B = { 1 , 5 } A \Delta B = \{1, 5\} AΔB={1,5}

题目描述

给定 n n n 个集合 s 1 , s 2 , … s n s_1, s_2, \dots s_n s1,s2,sn,每个集合都含有 [ 1 , m ] [1, m] [1,m] 之间的若干个整数。

现在,有 q q q 次操作,每次操作如下:

  • 1 x y:将 s x s_x sx 中的每个元素都加上 y y y,再删去其中大于 m m m 的;
  • 2 x y:将 s x s_x sx 中的每个元素都减去 y y y,再删去其中小于 1 1 1 的;
  • 3 x y:查询 s x s_x sx s y s_y sy交集的元素个数;
  • 4 x y:查询 s x s_x sx s y s_y sy并集的元素个数;
  • 5 x y:查询 s x s_x sx s y s_y sy对称差的元素个数;

输入格式

第一行有三个数,依次表示集合的个数 n n n,集合元素的最大值 m m m 和操作次数 q q q

2 2 2 到第 ( n + 1 ) (n + 1) (n+1) 行,每行有若干个整数,第 ( i + 1 ) (i + 1) (i+1) 行的整数描述集合 i i i 的元素:
每行首先有一个整数 c i c_i ci 表示 s i s_i si 的元素个数,接下来有 c c c 个互不相同的整数 s i , 1 , s i , 2 , … s i , c i s_{i,1}, s_{i,2}, \dots s_{i, c_i} si,1,si,2,si,ci 表示集合 s i s_i si 里的元素。

接下来 q q q 行,每行三个整数 o , x , y o, x, y o,x,y,表示一次操作。具体见『题目描述』。

输出格式

对于每个查询操作,请输出一行一个整数表示答案。

输入输出样例 #1

输入 #1

2 5 5
3 1 2 3
4 1 2 4 5
1 2 1
2 1 1
3 1 2
4 1 2
5 1 2

输出 #1

1
4
3

说明/提示

数据规模与约定

对于全部的测试点,保证 1 ≤ n , m , q ≤ 3 × 1 0 4 1 \leq n,m,q \leq 3 \times 10^4 1n,m,q3×104 1 ≤ ∑ i = 1 n c i ≤ 1 0 6 1 \leq \sum_{i = 1}^n c_i \leq 10^6 1i=1nci106 1 ≤ x , y ≤ n 1 \leq x, y \leq n 1x,yn 1 ≤ o ≤ 5 1 \leq o \leq 5 1o5。集合里的元素都是不超过 m m m 的正整数。

感谢 @Zyingyzzz 提供 hack 数据一组。

C++实现

#include <bitset>
#include <vector>
#include <iostream>

const int maxn=30005;
int n,m,q;
std::bitset<maxn> s[maxn];

int main(){
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    std::cin>>n>>m>>q;
    for(int i = 1,c,x;i<=n; i++){
        for(std::cin>>c;c;--c){
            std::cin>>x;
            s[i].set(x-1,1);
        }
    }
    for(int i = 0; i<m; i++) s[0].set(i,1);
    for(int o,x,y;q;--q){
        std::cin>>o>>x>>y;
        if(o==1){
            s[x]<<=y;
            s[x]&=s[0];
        }else if(o==2){
            s[x]>>=y;
        }else if(o==3){
            std::cout<<(s[x]&s[y]).count()<<'\n';
        }else if(o==4){
            std::cout<<(s[x]|s[y]).count()<<'\n';
        }else if(o==5){
            std::cout<<(s[x]^s[y]).count()<<'\n';
        }
    }
    return 0;
}

在这里插入图片描述

后续

接下来我会不断用C++来实现信奥比赛中的算法题、GESP考级编程题实现、白名单赛事考题实现,记录日常的编程生活、比赛心得,感兴趣的请关注,我后续将继续分享相关内容

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值