打卡信奥刷题(2519)用C++实现信奥 P1978 集合

P1978 集合

题目描述

集合是数学中的一个概念,用通俗的话来讲就是:一大堆数在一起就构成了集合。

集合有如下的特性:

  • 无序性:任一个集合中,每个元素的地位都是相同的,元素之间是无序的。

  • 互异性:一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。

  • 确定性:给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。

例如 A={1,2,3}A = \{ 1, 2, 3 \}A={1,2,3} 就是一个集合。我们可以知道,111 属于 AAA,即 1∈A1 \in A1A444 不属于 AAA,即 4∉A4 \notin A4/A。一个集合的大小,就是其中元素的个数。

现在定义一个特殊的 kkk-集合,要求满足:

  • 集合的所有特性
  • 对任意一个该集合内的元素 xxx,不存在一个数 yyy,使得 y=kxy = k xy=kx 并且 yyy 属于该集合。即集合中的任意一个数,它乘以 kkk 之后的数都不在这个集合内。

给你一个由 nnn 个不同的数组成的集合,请你从这个集合中找出一个最大的 kkk-集合。

输入格式

第一行:两个整数:nnnkkk

第二行:nnn 个整数:aia_iai 表示给定的集合。

输出格式

第一行:一个整数:ans\mathit{ans}ans 表示最大的 kkk-集合的大小。

输入输出样例 #1

输入 #1

6 2	
2 3 6 5 4 10

输出 #1

3

说明/提示

提示:在样例所给集合中,找出的最大的 222-集合为 {4,5,6}\{ 4, 5, 6 \}{4,5,6}

  • 对于 30%30 \%30% 的数据:n,k≤100n, k \le 100n,k100
  • 对于 40%40 \%40% 的数据:∣ai∣≤231−1\lvert a_i \rvert \le 2^{31} - 1ai2311
  • 对于 70%70 \%70% 的数据:n,k≤5000n, k \le 5000n,k5000
  • 对于 100%100 \%100% 的数据:2≤n,k≤1052 \le n, k \le {10}^52n,k1051≤∣ai∣≤263−11 \le \lvert a_i \rvert \le 2^{63} - 11ai2631

C++实现

#include<iostream>
#include<cstdio>
#include<set>
#include<algorithm>
using namespace std;
long long a[100005];
set<long long> A;
int n,k;
int main(){
    scanf("%d%d",&n,&k);
    for(int i=1;i<=n;i++){
        scanf("%lld",&a[i]);
    }
    sort(a+1,a+1+n);
    for(int i=1;i<=n;i++){
        if(a[i]%k||A.find(a[i]/k)==A.end()){
            A.insert(a[i]);
        }
    }
    printf("%d\n",A.size());
    return 0;
}

在这里插入图片描述

后续

接下来我会不断用C++来实现信奥比赛中的算法题、GESP考级编程题实现、白名单赛事考题实现,记录日常的编程生活、比赛心得,感兴趣的请关注,我后续将继续分享相关内容

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值