打卡信奥刷题(2568)用C++实现信奥 P2222 [HNOI2001] 矩阵乘积

P2222 [HNOI2001] 矩阵乘积

题目描述

已知矩阵:

Am×n=[a1,1a1,2⋯a1,na2,1a2,2⋯a2,n⋮⋮⋱⋮am,1am,2⋯am,n],Bn×p=[b1,1b1,2⋯b1,pb2,1b2,2⋯b2,p⋮⋮⋱⋮bn,1bn,2⋯bn,q]A_{m\times n}=\begin{bmatrix}a_{1,1} & a_{1,2} & \cdots & a_{1,n}\\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots\\ a_{m,1} & a_{m,2} & \cdots &a_{m,n} \end{bmatrix} ,B_{n\times p}=\begin{bmatrix}b_{1,1} & b_{1,2} & \cdots & b_{1,p}\\ b_{2,1} & b_{2,2} & \cdots & b_{2,p} \\ \vdots & \vdots & \ddots & \vdots\\ b_{n,1} & b_{n,2} & \cdots &b_{n,q} \end{bmatrix}Am×n=a1,1a2,1am,1a1,2a2,2am,2a1,na2,nam,n,Bn×p=b1,1b2,1bn,1b1,2b2,2bn,2b1,pb2,pbn,q

当矩阵 AAA 的列数与矩阵 BBB 的行数相同时,则 AAABBB 可以相乘,其乘积为一个 m×pm\times pm×p 的矩阵 DDD

Dm×p=[d1,1d1,2⋯d1,pd2,1d2,2⋯d2,p⋮⋮⋱⋮dm,1dm,2⋯dm,p]D_{m\times p}=\begin{bmatrix} d_{1,1} & d_{1,2} & \cdots & d_{1,p}\\ d_{2,1} & d_{2,2} & \cdots & d_{2,p} \\ \vdots & \vdots & \ddots & \vdots\\ d_{m,1} & d_{m,2} & \cdots & d_{m,p}\end{bmatrix}Dm×p=d1,1d2,1dm,1d1,2d2,2dm,2d1,pd2,pdm,p

其中 di,j=∑k=1nai,k×bk,jd_{i,j}=\sum^n_{k=1} a_{i,k} \times b_{k,j}di,j=k=1nai,k×bk,j,简记为 D=A×BD=A\times BD=A×B

现已知三个矩阵 A,B,CA,B,CA,B,C,这三个矩阵大多数元素为 000,我们把这种矩阵称为稀疏矩阵。因此,我们采用三元组 i,j,ai,j,ai,j,a 来表示矩阵的第 iii 行第 jjj 列的值为 aaa 其余未列出的元素均为 000;在计算机中,我们仅给出非零元素的三元组,而且使用行优先法给出稀疏矩阵的三元组,首先是第一行按列给出,然后是第二行按列给出……

例如,矩阵:[1000002−101230000]\begin{bmatrix}1&0&0&0\\0&0&2&-1\\0&1&2&3\\0&0&0&0\end{bmatrix}1000001002200130 那么,矩阵的三元组表示为:

1 1 1
2 3 2
2 4 -1
3 2 1 
3 3 2
3 4 3

你的任务就是:计算矩阵 D=A×B×CD=A\times B\times CD=A×B×C

输入格式

第一行为两个正整数 x,yx,yx,y,分别表示输出结果所在的行和列。

第二行为四个整数 m,n,o,pm,n,o,pm,n,o,p,表明 AAAm×nm\times nm×n 的矩阵,BBBn×on\times on×o 的矩阵,CCCo×po\times po×p 的矩阵。

第三行以后的每一行有三个整数分别是矩阵的三元组表示法中的一个元素的值,每个矩阵之间有一个空行。表示的顺序是矩阵 A,B,CA,B,CA,B,C

输出格式

仅一个整数,为 DDD 的第 xxx 行第 yyy 列的元素的值。

输入输出样例 #1

输入 #1

1 2                       
3 4 2 3
1 1 3
1 4 5
2 2 1
3 1 2

1 2 2
2 1 1
3 1 2
3 2 4

1 2 2
1 3 3
2 1 1
2 2 2

输出 #1

12

说明/提示

数据规模与约定

对于全部的测试点,保证 1≤m,n,o,p≤6×1031\le m,n,o,p\le 6\times 10^31m,n,o,p6×103,三元数组的总个数不大于 6×1036\times 10^36×103。数据之间用空格分开。

C++实现

#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstring>
#include <cctype>
using namespace std;
typedef long long ll;
int x,y,m,n,o,p;
int Am[6005]={0},Bm[6005]={0};
char input[10005];
int main(){
    int i,j,u,v,val;
    scanf("%d%d%d%d%d%d",&x,&y,&m,&n,&o,&p);
    fgets(input,10000,stdin);
    for(;;){
        fgets(input,10000,stdin);
        if(!isdigit(input[0]))break;
        sscanf(input,"%d%d%d",&u,&v,&val);
        if(u==x)Am[v]=val;
    }
    for(;;){
        fgets(input,10000,stdin);
        if(!isdigit(input[0]))break;
        sscanf(input,"%d%d%d",&u,&v,&val);
        Bm[v]+=Am[u]*val;
    }
    memcpy(Am,Bm,sizeof(Bm));
    memset(Bm,0,sizeof(Bm));
    while(~scanf("%d%d%d",&u,&v,&val))
        Bm[v]+=Am[u]*val;
    printf("%d\n",Bm[y]);
    return 0;
}

在这里插入图片描述

后续

接下来我会不断用C++来实现信奥比赛中的算法题、GESP考级编程题实现、白名单赛事考题实现,记录日常的编程生活、比赛心得,感兴趣的请关注,我后续将继续分享相关内容

根据引用\[1\]和引用\[2\]的描述,目中的影魔拥有n个灵魂,每个灵魂有一个战斗力ki。对于任意一对灵魂对i,j (i<j),如果不存在ks (i<s<j)大于ki或者kj,则会为影魔提供p1的攻击力。另一种情况是,如果存在一个位置k,满足ki<c<kj或者kj<c<ki,则会为影魔提供p2的攻击力。其他情况下的灵魂对不会为影魔提供攻击力。 根据引用\[3\]的描述,我们可以从左到右进行枚举。对于情况1,当扫到r\[i\]时,更新l\[i\]的贡献。对于情况2.1,当扫到l\[i\]时,更新区间\[i+1,r\[i\]-1\]的贡献。对于情况2.2,当扫到r\[i\]时,更新区间\[l\[i\]+1,i-1\]的贡献。 因此,对于给定的区间\[l,r\],我们可以根据上述方法计算出区间内所有下标二元组i,j (l<=i<j<=r)的贡献之和。 #### 引用[.reference_title] - *1* *3* [P3722 [AH2017/HNOI2017]影魔(树状数组)](https://blog.csdn.net/li_wen_zhuo/article/details/115446022)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [洛谷3722 AH2017/HNOI2017 影魔 线段树 单调栈](https://blog.csdn.net/forever_shi/article/details/119649910)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值