目录
题目链接:https://leetcode.cn/problems/unique-paths/
题目链接:https://leetcode.cn/problems/unique-paths-ii/
题目:62.不同路径
题目链接:https://leetcode.cn/problems/unique-paths/
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 1:
- 输入:m = 3, n = 7
- 输出:28
示例 2:
- 输入:m = 2, n = 3
- 输出:3
解释: 从左上角开始,总共有 3 条路径可以到达右下角。
- 向右 -> 向右 -> 向下
- 向右 -> 向下 -> 向右
- 向下 -> 向右 -> 向右
示例 3:
- 输入:m = 7, n = 3
- 输出:28
示例 4:
- 输入:m = 3, n = 3
- 输出:6
提示:
- 1 <= m, n <= 100
- 题目数据保证答案小于等于 2 * 10^9
思路:
1.dp数组的含义
dp[i][j]表示从起点(0,0)到位置(i,j)的不同的路径条数
2.递推公式
从起点到当前位置(i,j)的不同路径条数=从起点到左边位置(i,j-1)的不同路径条数+从起点到右边位置(i-1,j)的不同路径条数。
3.dp数组的初始化
dp[i][0]=1,dp[0][j]=1
4.遍历顺序和举例推导dp数组
遍历顺序:从前往后
-
具体代码如下:
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
};
时间复杂度:O(m × n)
空间复杂度:O(m × n)
题目:63.不同路径II
题目链接:https://leetcode.cn/problems/unique-paths-ii/
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1 和 0 来表示。
示例 1:
- 输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
- 输出:2 解释:
- 3x3 网格的正中间有一个障碍物。
- 从左上角到右下角一共有 2 条不同的路径:
- 向右 -> 向右 -> 向下 -> 向下
- 向下 -> 向下 -> 向右 -> 向右
示例 2:
- 输入:obstacleGrid = [[0,1],[0,0]]
- 输出:1
提示:
- m == obstacleGrid.length
- n == obstacleGrid[i].length
- 1 <= m, n <= 100
- obstacleGrid[i][j] 为 0 或 1
思路:
1.dp数组的含义
dp[i][j]表示从起点(0,0)到当前位置(i,j)的不同路径条数
2.递推公式
和62.不同路径的递推公式一样:dp[i][j]=dp[i-1][j]+dp[i][j-1],但是要注意到障碍物的情况,
如果当前位置就是障碍物时,应该保持为初始状态0
3.dp数组初始化
和62.不同路径不同的是,要考虑障碍物的存在,如果当前遍历的位置上有障碍物,那么当前位置和以后的位置都保持为初始状态0,
vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;
4.遍历顺序
从前往后,一层一层遍历
5.举例推导dp数组
具体代码如下:
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) //如果在起点或终点出现了障碍,直接返回0
return 0;
vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (obstacleGrid[i][j] == 1) continue;
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
};
时间复杂度:O(n × m),n、m 分别为obstacleGrid 长度和宽度
空间复杂度:O(n × m)