常见机器学习模型(一)—— 贝叶斯分类器

本文概述了十大经典机器学习模型,包括有监督学习和无监督学习算法,并深入探讨了贝叶斯定理及其在朴素贝叶斯分类器中的应用。通过实例解释了逆向概率、先验概率和后验概率的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

十大经典模型

在正式开始之前我们先来看一下十大经典的机器学习模型,这些模型给后来的机器学习发展奠定了基础,后续的发展也总能看到它们的影子,

  • 分类算法:C4.5,朴素贝叶斯(Naive Bayes),SVM,KNN,Adaboost,CART。(有监督学习,有label)
  • 聚类算法:K-Means,EM。(无监督学习,无label)
  • 关联分析:Apriori。(啤酒和尿布放在一起销量更好的经典案例)
  • 连接分析:PageRank。(找节点与边,获得对应权重)

在此也列出常用算法所使用的工具包,以便后续查阅:

算法 工具
决策树 from sklearn.tree import DecisionTreeClassifier
朴素贝叶斯 from sklearn.naive_bayes import MultinomialNB
SVM from sklearn.svm import SVC
KNN from sklearn.neighbors import KNeighborsClassifier
Adaboost from sklearn.ensemble import AdaBoostClassifier
K-Means from sklearn.cluster import KMeans
EM from sklearn.mixture import GMM
Apriori from efficient_apriori import apriori
PageRank import networkx as nx

贝叶斯定理

贝叶斯是为了解决“逆向概率”问题而提出来一种方法,后来被我们称之为贝叶斯定理。他想找出一种方法:尝试在没有太多可靠证据的情况下,怎样做出更加符合数学逻辑的推测?

正向概率,比较容易理解,比如我们已经知道袋子里面有N 个球,不是黑球就是白球,其中M个是黑球,那么把手伸进去摸一个球,就能知道摸出黑球的概率是多少 => 这种情况往往是上帝视角,即了解了事情的全貌再做判断。

逆向概率,贝叶斯则从实际场景出发,提了一个问题:如果我们事先不知道袋子里面黑球和白球的比例,而是通过我们摸出来的球的颜色,能判断出袋子里面黑白球的比例么?

先验概率,通过经验来判断事情发生的概率。

后验概率,就是发生结果之后,推测原因的概率。

条件概率,事件A 在另外一个事件B已经发生条件下的发生概率,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值