Markdown笔记
数学公式
基本符号
乘法 | \(\times\) | $\times$ |
粗体 | \(\mathbf{P}\) | $\mathbf{P}$ |
连乘 | \(\prod_{n=1}^N\) | $\prod_{n=1}^N$ |
小于等于 | \(\leqslant\) | $\leqslant$ |
大于等于 | \(\geqslant\) | $\geqslant$ |
属于 | \(\in\) | $\in$ |
不属于 | \(\notin\) | $\notin$ |
模2加法 | \(\oplus\) | $\oplus$ |
克罗内克积 | \(\otimes\) | $\otimes$ |
罗马符号
各种符号都有大写和小写之分,体现在书写上就是第一个字母是否需要大写。
\(\sigma\) | $\sigma$ | \(\Sigma\) | $\Sigma$ | \(\varsigma\) | $\varsigma$ |
\(\gamma\) | $\gamma$ | \(\Gamma\) | $\Gamma$ | ||
\(\delta\) | $\delta$ | \(\Delta\) | $\Delta$ | ||
\(\theta\) | $\theta$ | \(\Theta\) | $\Theta$ | \(\vartheta\) | $\vartheta$ |
\(\phi\) | $\phi$ | \(\Phi\) | $\Phi$ | \(\varphi\) | $\varphi$ |
\(\epsilon\) | $\epsilon$ | \(\Epsilon\) | $\Epsilon$ | \(\varepsilon\) | $\varepsilon$ |
\(\zeta\) | $\zeta$ | \(\Zeta\) | $\Zeta$ | ||
\(\eta\) | $\eta$ | \(\Eta\) | $\Eta$ |
不同括号:
\(( 小括号 )\):$( )$
\(\left[ 大括号 \right]\):$\left[ \right]$
;
\(\left \{ 花括号 \right \}\):$\left \{ \right \}$
;
注意:花括号比大括号多\
;当然,如果式子里只有一个\([]\)时,可以不用\left
这样的前导词,但是花括号需要使用这样的引导词,因为不加的话,花括号会被默认识别为内容分组符而不被显示。
矩阵:
元素和元素之间用&
分割;换行\\
;
没有括号:\(\begin{matrix} a & b \\ c & d\end{matrix}\)
$\begin{matrix} a & b \\ c & d\end{matrix}$
大括号:\(\begin{bmatrix} a & b \\ c & d\end{bmatrix}\)
$\begin{bmatrix} a & b \\ c & d\end{bmatrix}$
$\left [\begin{matrix} a & b \\ c & d \end{matrix} \right]$
花括号:\(\begin{Bmatrix} a & b \\ c & d\end{Bmatrix}\)
$\begin{Bmatrix} a & b \\ c & d\end{Bmatrix}$
$\left \{ \begin{matrix} a & b \\ c & d \end{matrix} \right \}$
小括号:\(\begin{pmatrix} a & b \\ c & d\end{pmatrix}\)
$\begin{pmatrix} a & b \\ c & d\end{pmatrix}$
$( \begin{matrix} a & b \\ c & d \end{matrix} )$
常用的矩阵形式为以上三种,记住p - b - B
。
省略号:
- \(\cdots\) 水平省略号;
$\cdots$
- \(\ddots\) 斜省略号;
$\ddots$
- \(\vdots\) 竖直省略号;
$\vdots$
矩阵中使用省略号,需要配合元素分隔符&
,不然会出现错位的现象。
带竖线的矩阵:\(\left[ \begin{array}{cc|c} a & b & c \\ d & e & f\end{array}\right]\)
$\left[ \begin{array}{cc|c} a & b & c \\ d & e & f\end{array}\right]$
\begin{array}{cc|c} \end{array}
是个固定写法,只能用c
,不能用别的,在需要加入竖线的地方标注即可。