Python修饰器的函数式编程

Python的修饰器的英文名叫Decorator,当你看到这个英文名的时候,你可能会把其跟Design Pattern里的Decorator搞混了,其实这是完全不同的两个东西。虽然好像,他们要干的事都很相似——都是想要对一个已有的模块做一些“修饰工作”,所谓修饰工作就是想给现有的模块加上一些小装饰(一些小功能,这些小功能可能好多模块都会用到),但又不让这个小装饰(小功能)侵入到原有的模块中的代码里去。但是OO的Decorator简直就是一场恶梦,不信你就去看看wikipedia上的词条(Decorator Pattern)里的UML图和那些代码,这就是我在《 从面向对象的设计模式看软件设计》“餐后甜点”一节中说的,OO鼓励了——“厚重地胶合和复杂层次”,也是《 如此理解面向对象编程》中所说的“OO的狂热者们非常害怕处理数据”,Decorator Pattern搞出来的代码简直就是OO的反面教程。

Python 的 Decorator在使用上和Java/C#的Annotation很相似,就是在方法名前面加一个@XXX注解来为这个方法装饰一些东西。但是,Java/C#的Annotation也很让人望而却步,太TMD的复杂了,你要玩它,你需要了解一堆Annotation的类库文档,让人感觉就是在学另外一门语言。

而Python使用了一种相对于Decorator Pattern和Annotation来说非常优雅的方法,这种方法不需要你去掌握什么复杂的OO模型或是Annotation的各种类库规定,完全就是语言层面的玩法:一种函数式编程的技巧。如果你看过本站的《函数式编程》,你一定会为函数式编程的那种“描述你想干什么,而不是描述你要怎么去实现”的编程方式感到畅快。(如果你不了解函数式编程,那在读本文之前,还请你移步去看看《函数式编程》) 好了,我们先来点感性认识,看一个Python修饰器的Hello World的代码。

 

Hello World

下面是代码:

文件名:hello.py
1
2
3
4
5
6
7
8
9
10
11
12
def hello(fn):
     def wrapper():
         print "hello, %s" % fn.__name__
         fn()
         print "goodby, %s" % fn.__name__
     return wrapper
 
@hello
def foo():
     print "i am foo"
 
foo()

当你运行代码,你会看到如下输出:

1
2
3
4
[chenaho@chenhao-air]$ python hello.py
hello, foo
i am foo
goodby, foo

你可以看到如下的东西:

1)函数foo前面有个@hello的“注解”,hello就是我们前面定义的函数hello

2)在hello函数中,其需要一个fn的参数(这就用来做回调的函数)

3)hello函数中返回了一个inner函数wrapper,这个wrapper函数回调了传进来的fn,并在回调前后加了两条语句。

Decorator 的本质

对于Python的这个@注解语法糖- Syntactic Sugar 来说,当你在用某个@decorator来修饰某个函数func时,如下所示:

1
2
3
@decorator
def func():
     pass

其解释器会解释成下面这样的语句:

1
func = decorator(func)

尼玛,这不就是把一个函数当参数传到另一个函数中,然后再回调吗?是的,但是,我们需要注意,那里还有一个赋值语句,把decorator这个函数的返回值赋值回了原来的func。 根据《函数式编程》中的first class functions中的定义的,你可以把函数当成变量来使用,所以,decorator必需得返回了一个函数出来给func,这就是所谓的higher order function 高阶函数,不然,后面当func()调用的时候就会出错。 就我们上面那个hello.py里的例子来说,

1
2
3
@hello
def foo():
     print "i am foo"

被解释成了:

1
foo = hello(foo)

是的,这是一条语句,而且还被执行了。你如果不信的话,你可以写这样的程序来试试看:

1
2
3
4
5
6
def fuck(fn):
     print "fuck %s!" % fn.__name__[:: - 1 ].upper()
 
@fuck
def wfg():
     pass

没了,就上面这段代码,没有调用wfg()的语句,你会发现, fuck函数被调用了,而且还很NB地输出了我们每个人的心声!

再回到我们hello.py的那个例子,我们可以看到,hello(foo)返回了wrapper()函数,所以,foo其实变成了wrapper的一个变量,而后面的foo()执行其实变成了wrapper()

知道这点本质,当你看到有多个decorator或是带参数的decorator,你也就不会害怕了。

比如:多个decorator

1
2
3
4
@decorator_one
@decorator_two
def func():
     pass

相当于:

1
func = decorator_one(decorator_two(func))

比如:带参数的decorator:

1
2
3
@decorator (arg1, arg2)
def func():
     pass

相当于:

1
func = decorator(arg1,arg2)(func)

这意味着decorator(arg1, arg2)这个函数需要返回一个“真正的decorator”。

带参数及多个Decrorator

我们来看一个有点意义的例子:

html.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
def makeHtmlTag(tag, * args, * * kwds):
     def real_decorator(fn):
         css_class = " class='{0}'" . format (kwds[ "css_class" ]) \
                                      if "css_class" in kwds else ""
         def wrapped( * args, * * kwds):
             return "<" + tag + css_class + ">" + fn( * args, * * kwds) + "</" + tag + ">"
         return wrapped
     return real_decorator
 
@makeHtmlTag (tag = "b" , css_class = "bold_css" )
@makeHtmlTag (tag = "i" , css_class = "italic_css" )
def hello():
     return "hello world"
 
print hello()
 
# 输出:
# <b class='bold_css'><i class='italic_css'>hello world</i></b>

在上面这个例子中,我们可以看到:makeHtmlTag有两个参数。所以,为了让 hello = makeHtmlTag(arg1, arg2)(hello) 成功,makeHtmlTag 必需返回一个decorator(这就是为什么我们在makeHtmlTag中加入了real_decorator()的原因),这样一来,我们就可以进入到 decorator 的逻辑中去了—— decorator得返回一个wrapper,wrapper里回调hello。看似那个makeHtmlTag() 写得层层叠叠,但是,已经了解了本质的我们觉得写得很自然

你看,Python的Decorator就是这么简单,没有什么复杂的东西,你也不需要了解过多的东西,使用起来就是那么自然、体贴、干爽、透气,独有的速效凹道和完美的吸收轨迹,让你再也不用为每个月的那几天感到焦虑和不安,再加上贴心的护翼设计,量多也不用当心。对不起,我调皮了。

什么,你觉得上面那个带参数的Decorator的函数嵌套太多了,你受不了。好吧,没事,我们看看下面的方法。

class式的 Decorator

首先,先得说一下,decorator的class方式,还是看个示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class myDecorator( object ):
 
     def __init__( self , fn):
         print "inside myDecorator.__init__()"
         self .fn = fn
 
     def __call__( self ):
         self .fn()
         print "inside myDecorator.__call__()"
 
@myDecorator
def aFunction():
     print "inside aFunction()"
 
print "Finished decorating aFunction()"
 
aFunction()
 
# 输出:
# inside myDecorator.__init__()
# Finished decorating aFunction()
# inside aFunction()
# inside myDecorator.__call__()

上面这个示例展示了,用类的方式声明一个decorator。我们可以看到这个类中有两个成员:
1)一个是__init__(),这个方法是在我们给某个函数decorator时被调用,所以,需要有一个fn的参数,也就是被decorator的函数。
2)一个是__call__(),这个方法是在我们调用被decorator函数时被调用的。
上面输出可以看到整个程序的执行顺序。

这看上去要比“函数式”的方式更易读一些。

下面,我们来看看用类的方式来重写上面的html.py的代码:

html.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class makeHtmlTagClass( object ):
 
     def __init__( self , tag, css_class = ""):
         self ._tag = tag
         self ._css_class = " class='{0}'" . format (css_class) \
                                        if css_class ! = " " else " "
 
     def __call__( self , fn):
         def wrapped( * args, * * kwargs):
             return "<" + self ._tag + self ._css_class + ">"  \
                        + fn( * args, * * kwargs) + "</" + self ._tag + ">"
         return wrapped
 
@makeHtmlTagClass (tag = "b" , css_class = "bold_css" )
@makeHtmlTagClass (tag = "i" , css_class = "italic_css" )
def hello(name):
     return "Hello, {}" . format (name)
 
print hello( "Hao Chen" )

上面这段代码中,我们需要注意这几点:
1)如果decorator有参数的话,__init__() 成员就不能传入fn了,而fn是在__call__的时候传入的。
2)这段代码还展示了 wrapped(*args, **kwargs) 这种方式来传递被decorator函数的参数。(其中:args是一个参数列表,kwargs是参数dict,具体的细节,请参考Python的文档或是StackOverflow的这个问题,这里就不展开了)

用Decorator设置函数的调用参数

你有三种方法可以干这个事:

第一种,通过 **kwargs,这种方法decorator会在kwargs中注入参数。

1
2
3
4
5
6
7
8
9
10
11
def decorate_A(function):
     def wrap_function( * args, * * kwargs):
         kwargs[ 'str' ] = 'Hello!'
         return function( * args, * * kwargs)
     return wrap_function
 
@decorate_A
def print_message_A( * args, * * kwargs):
     print (kwargs[ 'str' ])
 
print_message_A()

第二种,约定好参数,直接修改参数

1
2
3
4
5
6
7
8
9
10
11
def decorate_B(function):
     def wrap_function( * args, * * kwargs):
         str = 'Hello!'
         return function( str , * args, * * kwargs)
     return wrap_function
 
@decorate_B
def print_message_B( str , * args, * * kwargs):
     print ( str )
 
print_message_B()

第三种,通过 *args 注入

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
def decorate_C(function):
     def wrap_function( * args, * * kwargs):
         str = 'Hello!'
         #args.insert(1, str)
         args = args + ( str ,)
         return function( * args, * * kwargs)
     return wrap_function
 
class Printer:
     @decorate_C
     def print_message( self , str , * args, * * kwargs):
         print ( str )
 
p = Printer()
p.print_message()
Decorator的副作用

到这里,我相信你应该了解了整个Python的decorator的原理了。

相信你也会发现,被decorator的函数其实已经是另外一个函数了,对于最前面那个hello.py的例子来说,如果你查询一下foo.__name__的话,你会发现其输出的是“wrapper”,而不是我们期望的“foo”,这会给我们的程序埋一些坑。所以,Python的functool包中提供了一个叫wrap的decorator来消除这样的副作用。下面是我们新版本的hello.py。

文件名:hello.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
from functools import wraps
def hello(fn):
     @wraps (fn)
     def wrapper():
         print "hello, %s" % fn.__name__
         fn()
         print "goodby, %s" % fn.__name__
     return wrapper
 
@hello
def foo():
     '''foo help doc'''
     print "i am foo"
     pass
 
foo()
print foo.__name__ #输出 foo
print foo.__doc__  #输出 foo help doc

当然,即使是你用了functools的wraps,也不能完全消除这样的副作用。

来看下面这个示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from inspect import getmembers, getargspec
from functools import wraps
 
def wraps_decorator(f):
     @wraps (f)
     def wraps_wrapper( * args, * * kwargs):
         return f( * args, * * kwargs)
     return wraps_wrapper
 
class SomeClass( object ):
     @wraps_decorator
     def method( self , x, y):
         pass
 
obj = SomeClass()
for name, func in getmembers(obj, predicate = inspect.ismethod):
     print "Member Name: %s" % name
     print "Func Name: %s" % func.func_name
     print "Args: %s" % getargspec(func)[ 0 ]
 
# 输出:
# Member Name: method
# Func Name: method
# Args: []

你会发现,即使是你你用了functools的wraps,你在用getargspec时,参数也不见了。

要修正这一问,我们还得用Python的反射来解决,下面是相关的代码:

1
2
3
4
5
6
7
8
9
10
11
12
def get_true_argspec(method):
     argspec = inspect.getargspec(method)
     args = argspec[ 0 ]
     if args and args[ 0 ] = = 'self' :
         return argspec
     if hasattr (method, '__func__' ):
         method = method.__func__
     if not hasattr (method, 'func_closure' ) or method.func_closure is None :
         raise Exception( "No closure for method." )
 
     method = method.func_closure[ 0 ].cell_contents
     return get_true_argspec(method)

当然,我相信大多数人的程序都不会去getargspec。所以,用functools的wraps应该够用了。

一些decorator的示例

好了,现在我们来看一下各种decorator的例子:

给函数调用做缓存

这个例实在是太经典了,整个网上都用这个例子做decorator的经典范例,因为太经典了,所以,我这篇文章也不能免俗。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
from functools import wraps
def memo(fn):
     cache = {}
     miss = object ()
 
     @wraps (fn)
     def wrapper( * args):
         result = cache.get(args, miss)
         if result is miss:
             result = fn( * args)
             cache[args] = result
         return result
 
     return wrapper
 
@memo
def fib(n):
     if n < 2 :
         return n
     return fib(n - 1 ) + fib(n - 2 )

上面这个例子中,是一个斐波拉契数例的递归算法。我们知道,这个递归是相当没有效率的,因为会重复调用。比如:我们要计算fib(5),于是其分解成fib(4) + fib(3),而fib(4)分解成fib(3)+fib(2),fib(3)又分解成fib(2)+fib(1)…… 你可看到,基本上来说,fib(3), fib(2), fib(1)在整个递归过程中被调用了两次。

而我们用decorator,在调用函数前查询一下缓存,如果没有才调用了,有了就从缓存中返回值。一下子,这个递归从二叉树式的递归成了线性的递归。

Profiler的例子

这个例子没什么高深的,就是实用一些。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import cProfile, pstats, StringIO
 
def profiler(func):
     def wrapper( * args, * * kwargs):
         datafn = func.__name__ + ".profile" # Name the data file
         prof = cProfile.Profile()
         retval = prof.runcall(func, * args, * * kwargs)
         #prof.dump_stats(datafn)
         s = StringIO.StringIO()
         sortby = 'cumulative'
         ps = pstats.Stats(prof, stream = s).sort_stats(sortby)
         ps.print_stats()
         print s.getvalue()
         return retval
 
     return wrapper
注册回调函数

下面这个示例展示了通过URL的路由来调用相关注册的函数示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class MyApp():
     def __init__( self ):
         self .func_map = {}
 
     def register( self , name):
         def func_wrapper(func):
             self .func_map[name] = func
             return func
         return func_wrapper
 
     def call_method( self , name = None ):
         func = self .func_map.get(name, None )
         if func is None :
             raise Exception( "No function registered against - " + str (name))
         return func()
 
app = MyApp()
 
@app .register( '/' )
def main_page_func():
     return "This is the main page."
 
@app .register( '/next_page' )
def next_page_func():
     return "This is the next page."
 
print app.call_method( '/' )
print app.call_method( '/next_page' )

注意:
1)上面这个示例中,用类的实例来做decorator。
2)decorator类中没有__call__(),但是wrapper返回了原函数。所以,原函数没有发生任何变化。

给函数打日志

下面这个示例演示了一个logger的decorator,这个decorator输出了函数名,参数,返回值,和运行时间。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from functools import wraps
def logger(fn):
     @wraps (fn)
     def wrapper( * args, * * kwargs):
         ts = time.time()
         result = fn( * args, * * kwargs)
         te = time.time()
         print "function      = {0}" . format (fn.__name__)
         print "    arguments = {0} {1}" . format (args, kwargs)
         print "    return    = {0}" . format (result)
         print "    time      = %.6f sec" % (te - ts)
         return result
     return wrapper
 
@logger
def multipy(x, y):
     return x * y
 
@logger
def sum_num(n):
     s = 0
     for i in xrange (n + 1 ):
         s + = i
     return s
 
print multipy( 2 , 10 )
print sum_num( 100 )
print sum_num( 10000000 )

上面那个打日志还是有点粗糙,让我们看一个更好一点的(带log level参数的):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import inspect
def get_line_number():
     return inspect.currentframe().f_back.f_back.f_lineno
 
def logger(loglevel):
     def log_decorator(fn):
         @wraps (fn)
         def wrapper( * args, * * kwargs):
             ts = time.time()
             result = fn( * args, * * kwargs)
             te = time.time()
             print "function   = " + fn.__name__,
             print "    arguments = {0} {1}" . format (args, kwargs)
             print "    return    = {0}" . format (result)
             print "    time      = %.6f sec" % (te - ts)
             if (loglevel = = 'debug' ):
                 print "    called_from_line : " + str (get_line_number())
             return result
         return wrapper
     return log_decorator

但是,上面这个带log level参数的有两具不好的地方,
1) loglevel不是debug的时候,还是要计算函数调用的时间。
2) 不同level的要写在一起,不易读。

我们再接着改进:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import inspect
 
def advance_logger(loglevel):
 
     def get_line_number():
         return inspect.currentframe().f_back.f_back.f_lineno
 
     def _basic_log(fn, result, * args, * * kwargs):
         print "function   = " + fn.__name__,
         print "    arguments = {0} {1}" . format (args, kwargs)
         print "    return    = {0}" . format (result)
 
     def info_log_decorator(fn):
         @wraps (fn)
         def wrapper( * args, * * kwargs):
             result = fn( * args, * * kwargs)
             _basic_log(fn, result, args, kwargs)
         return wrapper
 
     def debug_log_decorator(fn):
         @wraps (fn)
         def wrapper( * args, * * kwargs):
             ts = time.time()
             result = fn( * args, * * kwargs)
             te = time.time()
             _basic_log(fn, result, args, kwargs)
             print "    time      = %.6f sec" % (te - ts)
             print "    called_from_line : " + str (get_line_number())
         return wrapper
 
     if loglevel is "debug" :
         return debug_log_decorator
     else :
         return info_log_decorator

你可以看到两点,
1)我们分了两个log level,一个是info的,一个是debug的,然后我们在外尾根据不同的参数返回不同的decorator。
2)我们把info和debug中的相同的代码抽到了一个叫_basic_log的函数里,DRY原则。

一个MySQL的Decorator

下面这个decorator是我在工作中用到的代码,我简化了一下,把DB连接池的代码去掉了,这样能简单点,方便阅读。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import umysql
from functools import wraps
 
class Configuraion:
     def __init__( self , env):
         if env = = "Prod" :
             self .host    = "coolshell.cn"
             self .port    = 3306
             self .db      = "coolshell"
             self .user    = "coolshell"
             self .passwd  = "fuckgfw"
         elif env = = "Test" :
             self .host   = 'localhost'
             self .port   = 3300
             self .user   = 'coolshell'
             self .db     = 'coolshell'
             self .passwd = 'fuckgfw'
 
def mysql(sql):
 
     _conf = Configuraion(env = "Prod" )
 
     def on_sql_error(err):
         print err
         sys.exit( - 1 )
 
     def handle_sql_result(rs):
         if rs.rows > 0 :
             fieldnames = [f[ 0 ] for f in rs.fields]
             return [ dict ( zip (fieldnames, r)) for r in rs.rows]
         else :
             return []
 
     def decorator(fn):
         @wraps (fn)
         def wrapper( * args, * * kwargs):
             mysqlconn = umysql.Connection()
             mysqlconn.settimeout( 5 )
             mysqlconn.connect(_conf.host, _conf.port, _conf.user, \
                               _conf.passwd, _conf.db, True , 'utf8' )
             try :
                 rs = mysqlconn.query(sql, {})
             except umysql.Error as e:
                 on_sql_error(e)
 
             data = handle_sql_result(rs)
             kwargs[ "data" ] = data
             result = fn( * args, * * kwargs)
             mysqlconn.close()
             return result
         return wrapper
 
     return decorator
 
@mysql (sql = "select * from coolshell" )
def get_coolshell(data):
     ... ...
     ... ..
线程异步

下面量个非常简单的异步执行的decorator,注意,异步处理并不简单,下面只是一个示例。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from threading import Thread
from functools import wraps
 
def async(func):
     @wraps (func)
     def async_func( * args, * * kwargs):
         func_hl = Thread(target = func, args = args, kwargs = kwargs)
         func_hl.start()
         return func_hl
 
     return async_func
 
if __name__ = = '__main__' :
     from time import sleep
 
     @async
     def print_somedata():
         print 'starting print_somedata'
         sleep( 2 )
         print 'print_somedata: 2 sec passed'
         sleep( 2 )
         print 'print_somedata: 2 sec passed'
         sleep( 2 )
         print 'finished print_somedata'
 
     def main():
         print_somedata()
         print 'back in main'
         print_somedata()
         print 'back in main'
 
     main()
其它

关于更多的示例,你可以参看: Python Decorator Library

关于Python Decroator的各种提案,可以参看:Python Decorator Proposals

(全文完)

 

转自:http://coolshell.cn/articles/11265.html

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值