平衡二叉树(AVL)

基础概念

AVL树是一颗空树或者左右两个子树的高度差的绝对值不超过1,且左右两颗子树都是平衡二叉树。

 结点深度:

//返回以该结点为根结点的树高度
    public int height() {

        return Math.max((left == null) ? 0 : left.height(), (right == null) ? 0 : right.height()) + 1;
    }

左旋转:

private void leftRotate() {
        //创建新的结点,value为根结点的值;this即为根节点
        Node newNode = new Node(value);
        newNode.left = this.left;
        newNode.right = this.right.left;
        this.value = this.right.value;
        this.left = newNode;
        this.right = this.right.right;
    }

 右旋转

 

 private void rightRotate() {
        //创建新的结点,value为根结点的值;this即为根节点
        Node newNode = new Node(value);
        newNode.right = this.right;
        newNode.left = this.left.right;
        this.value = this.left.value;
        this.right = newNode;
        this.left = this.left.left;
    }

 双向旋转:

如果是以下情况,左旋、右旋后仍是非平衡二叉树;需要先对左子树or右子树进行旋转

//添加结点
    public void add(Node node) {
        if (node == null)
            return;
        if (this.value > node.value) {
            if (this.left == null)
                this.left = node;
            else
                this.left.add(node);
        } else {
            if (this.right == null)
                this.right = node;
            else
                this.right.add(node);
        }
        if (rightHeight() - leftHeight() > 1) {
            if (right != null && right.leftHeight() > right.rightHeight())
                right.rightRotate();
            leftRotate();//左旋转
        }
        if (leftHeight() - rightHeight() > 1) {
            if (left != null && left.rightHeight() > left.leftHeight())
                left.leftRotate();//先对当前结点的左子树进行左旋转
            rightRotate();//右旋转
        }
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值