难点在构图上,每面墙的两个门,都有四个顶点,可以和其他点相连(如果中间没有墙阻挡),因此就可以成功构造出一幅图。
#include<stdio.h>
#include<math.h>
struct point
{
double x,y;
}p[200];
struct segment
{
point a,b;
}s[200];
double g[200][200];
int t;
double cross(point a, point b, point o)
{
return (a.x-o.x)*(b.y-o.y)-(a.y-o.y)*(b.x-o.x);
}
int equal(double a)
{
if(fabs(a)<1e-6) return 0;
return a>0?1:-1;
}
double dist2(point a, point b)//计算两点之间距离
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
bool check(point a, point b, point c, point d)//判断线段是否相交
{
return equal(cross(a,c,d))*equal(cross(b,c,d))<=0 && equal(cross(a,b,c))*equal(cross(a,b,d))<=0;
}
double Dijkstra()
{
double dist[200];
bool visited[200];
for(int i=0;i<=t;i++)
{
dist[i]=1e10;
visited[i]=false;
}
dist[0]=0;
for(int i=0;i<=t;i++)
{
double temp=1e10;
int index;
for(int j=0;j<=t;j++)
{
if(!visited[j] && temp>dist[j])
{
index=j;
temp=dist[j];
}
}
if(temp==1e10)
{
break;
}
visited[index]=true;
for(int j=0;j<=t;j++)
{
if(!visited[j] && dist[index]+g[index][j]<dist[j])
{
dist[j]=dist[index]+g[index][j];
}
}
}
return dist[t];
}
int main()
{
int n;
while(scanf("%d",&n),n+1)
{
t=n*4+1;
p[0].x=0,p[0].y=5;
p[t].x=10,p[t].y=5;
for(int i=0;i<n;i++)
{
double x,a,b,c,d;
scanf("%lf%lf%lf%lf%lf",&x,&a,&b,&c,&d);
p[i*4+1].x=x,p[i*4+1].y=a;
p[i*4+2].x=x,p[i*4+2].y=b;
p[i*4+3].x=x,p[i*4+3].y=c;
p[i*4+4].x=x,p[i*4+4].y=d;
s[i*3].a.x=x,s[i*3].a.y=0,s[i*3].b.x=x,s[i*3].b.y=a;
s[i*3+1].a.x=x,s[i*3+1].a.y=b,s[i*3+1].b.x=x,s[i*3+1].b.y=c;
s[i*3+2].a.x=x,s[i*3+2].a.y=d,s[i*3+2].b.x=x,s[i*3+2].b.y=10;
}
for(int i=0;i<=t;i++)
{
for(int j=0;j<=t;j++)
{
g[i][j]=1e10;
}
}
for(int i=0;i<=t;i++)
{
for(int j=i+1;j<=t;j++)
{
int k;
for(k=0;k<n*3;k++)
{
if(p[i].x!=p[j].x && p[i].x!=s[k].a.x && p[j].x!=s[k].a.x && check(p[i],p[j],s[k].a,s[k].b))
{
break;
}
}
if(k>=n*3)
{
g[i][j]=dist2(p[i],p[j]);
}
}
}
printf("%.2lf\n",Dijkstra());
}
return 0;
}