是否完全二叉搜索树 (30 分)

将一系列给定数字顺序插入一个初始为空的二叉搜索树(定义为左子树键值大,右子树键值小),你需要判断最后的树是否一棵完全二叉树,并且给出其层序遍历的结果。
输入格式:

输入第一行给出一个不超过20的正整数N;第二行给出N个互不相同的正整数,其间以空格分隔。
输出格式:

将输入的N个正整数顺序插入一个初始为空的二叉搜索树。在第一行中输出结果树的层序遍历结果,数字间以1个空格分隔,行的首尾不得有多余空格。第二行输出YES,如果该树是完全二叉树;否则输出NO
输入样例1:

9
38 45 42 24 58 30 67 12 51

输出样例1:

38 45 24 58 42 30 12 67 51
YES

输入样例2:

8
38 24 12 45 58 67 42 51

输出样例2:

38 45 24 58 42 12 67 51
NO

思路:

用level数组去存这棵树,建二叉搜索树都从树根(编号为0)开始去寻找它该插入的位置,建树完成后遍历树,若从0到n-1之间有为-1的结点(空节点),说明不是完全二叉树

AC代码:

#include<bits/stdc++.h>
using namespace std;
vector<int> level(100010, -1);
int n, t, flag, st, cnt;
void build(int val, int root){
    if(val > level[root]){
        if(level[2 * root + 1] != -1)   build(val, 2 * root + 1);
        else    level[2 * root + 1] = val;
    }  
    else   if(val < level[root]){
        if(level[2 * root + 2] != -1)   build(val, 2 * root + 2);
        else    level[2 * root + 2] = val;
    }
}
int main(){
    cin >> n >> t, level[0] = t;
    for(int i = 1;i < n;i++)    cin >> t, build(t, 0);
    for(int i = 0;i < 100010;i++){
        if(level[i] != -1){
            if(flag++)  cout << " ";
            cout << level[i];
            cnt++;
        }else{
            if(cnt < n) st = 1;
        }
    }
    if(st)  cout << endl << "NO";
    else    cout << endl << "YES";
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值