工具介绍
Anaconda 和 Miniconda 是两种不同的 Python 环境管理工具,它们的主要区别在于安装和包管理的方式以及默认的包集成。
Anaconda
- 完整发行版:Anaconda 是一个完整的 Python 数据科学和机器学习发行版。它包含了大量的数据科学工具、库和包,如NumPy、Pandas、SciPy、scikit-learn、Jupyter等,以及一些可视化工具。
- 大型安装包:Anaconda 安装包相对较大,因为它包含了许多预安装的数据科学库和工具。
- 包管理器:Anaconda 使用 Conda 包管理器,可以轻松管理 Python 环境和包,以及解决包依赖关系。
- 默认环境:Anaconda 默认创建一个名为 “base” 的 Python 环境,其中包含了大多数常用的数据科学工具。
Miniconda(推荐使用,工具库按需下载,减少冗余)
- 轻量级发行版:Miniconda 是 Anaconda 的精简版本。它的安装包比 Anaconda 小得多,因为它只包含最基本的组件,包括 Python 和 Conda 包管理器。
- 自定义环境:Miniconda 允许用户根据自己的需求自定义安装数据科学工具和库。你可以从头开始构建自己的 Python 环境,只安装你需要的包。
- 灵活性:Miniconda 提供了更大的灵活性,因为你可以根据项目的需要创建不同的虚拟环境,并根据需求安装和管理包。
Miniconda安装步骤
-
启动终端terminal
-
创建miniconda3系统目录
mkdir -p ~/miniconda3 -
下载miniconda3最新版本安装脚本

本文介绍了Anaconda和Miniconda的区别,并详细阐述了在MacOS上安装Miniconda的步骤,包括环境配置、常用命令及工具库安装。推荐使用Miniconda以实现更灵活的Python环境管理。
最低0.47元/天 解锁文章
1083

被折叠的 条评论
为什么被折叠?



