4、计算机固件发展历程与技术解析

计算机固件发展历程与技术解析

1. 用户界面与BIOS早期发展

1.1 用户界面

早期的IBM PC/AT BIOS意识到,终端用户需要了解硬件初始化操作中的故障情况。由于硬件较为复杂,在POST(加电自检)操作中识别故障或潜在的不良硬件十分重要。PC/AT上实现的初始用户界面的一部分是POST代码(2字节数据,也称为错误代码),这些代码会出现在主I/O端口80或视频/串行控制台上,代表错误状态和可采取的纠正措施(如果有的话)。例如,错误代码0x0003表示CMOS电池电量低,纠正措施可以是继续启动或中止启动以修复问题。后来,蜂鸣声代码成为一种更有意义的方式,用于吸引用户对故障的关注或指示启动成功。如果计算机POST失败,会发出不同的蜂鸣声(短蜂鸣声或长蜂鸣声,且有周期性间隔)来告知用户问题的来源。例如,一声短蜂鸣声表示DRAM刷新失败。此后,每个BIOS供应商都设计了自己产品特定的POST和错误代码,以便在POST期间轻松检测故障。

1.2 BIOS服务

BIOS负责在POST期间对连接到主板的所有控制器进行硬件初始化。它实现了特定的例程来执行硬件组件的初始化,如输入和输出设备、存储设备和串行端口。PC/AT BIOS将平台初始化与运行时服务分开。

1.3 BIOS中断调用

IBM平台利用BIOS中断调用来从MS - DOS层调用平台硬件。传统上,通过触发软件中断来访问BIOS例程。这些BIOS中断调用被DOS内部操作和一些应用层使用。这种操作模式需要高权限。当软件触发BIOS中断时,CPU将中断重定向到IVT(中断向量表),并执行与该中断向量对应的特殊例程来执行请求的任务。INT指令用于触发软件中断,例如

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化训练,到执行分类及结果优化的完整流程,并介绍了精度评价通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置结果后处理环节,充分利用ENVI Modeler进行自动化建模参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略效果评估体系,涵盖当前企业传播面临的预算、资源、内容效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放GEO优化,提升品牌在AI搜索中的权威性可见性;④通过数据驱动评估体系量化品牌影响力销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析工具指南进行系统学习,重点关注媒体适配性策略GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值