LangChain Agent实践:构建智能推理和工具调用系统

LangChain Agent实践:构建智能推理和工具调用系统

引言

LangChain的Agent(智能体)系统提供了一种强大的机制,能够让AI模型进行推理并自主决定何时调用工具函数。本文将详细介绍如何使用LangChain构建和使用Agent系统。

环境准备

import os
from dotenv import load_dotenv
from langchain.agents import initialize_agent, AgentType
from langchain.tools import tool
from langchain_core.tools import StructuredTool
from langchain_openai import ChatOpenAI

# 加载环境变量
load_dotenv()

模型配置

model = ChatOpenAI(
    base_url="https://openrouter.ai/api/v1",
    api_key=os.getenv("KEY"),
    model="google/gemini-2.0-flash-001"
)

工具函数定义

1. 使用StructuredTool

def get_sunset(region: str):
    """
    获取指定地区的日落时间
    :param region: 地区
    :return: 日落时间信息
    """
    return f"{region}日落时间为18:30"

# 转换为工具
getSunsetTool = StructuredTool.from_function(
    func=get_sunset,
    description="获取指定地区的日落时间",
    name="get_sunset"
)

2. 使用@tool装饰器

@tool
def get_weather(region: str):
    """
    获取指定地区的天气
    :param region: 地区
    :return: 天气信息
    """
    return f"{region}晴天,25度"

Agent初始化和使用

# 初始化Agent
agent = initialize_agent(
    tools=[get_weather, getSunsetTool],
    llm=model,
    agent_type=AgentType.OPENAI_FUNCTIONS,
    verbose=True  # 启用详细输出
)

# 使用Agent处理查询
query = "上海今天天气怎么样什么时候日落"
response = agent.invoke(query)
print(response)

Agent工作流程解析

当Agent收到查询时,会经历以下步骤:

  1. 思考阶段(Thought)

    I need to find out the weather and sunset time for Shanghai.
    
  2. 行动选择(Action)

    Action: get_weather
    Action Input: 上海
    
  3. 观察结果(Observation)

    Observation: 上海晴天,25度
    
  4. 继续推理

    Thought: I have the weather information for Shanghai. Now I need to get the sunset time.
    
  5. 执行下一个动作

    Action: get_sunset
    Action Input: 上海
    
  6. 生成最终答案

    Final Answer: 上海今天晴天,25度,日落时间为18:30
    

技术要点解析

1. Agent类型

agent_type=AgentType.OPENAI_FUNCTIONS
  • OPENAI_FUNCTIONS:使用OpenAI函数调用方式
  • 其他可用类型:ZERO_SHOT_REACT_DESCRIPTION, STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION等

2. 工具注册

tools=[get_weather, getSunsetTool]
  • 支持多个工具同时注册
  • 工具可以混合使用@tool和StructuredTool

3. 详细输出

verbose=True
  • 显示Agent的思考和决策过程
  • 便于调试和理解Agent的行为

最佳实践

1. 工具函数设计

@tool
def get_detailed_weather(region: str):
    """
    获取详细的天气信息
    Args:
        region: 地区名称
    Returns:
        包含温度、湿度、风向等信息的详细天气报告
    """
    return {
        "temperature": "25度",
        "humidity": "65%",
        "wind": "东北风3级"
    }

2. 错误处理

@tool
def safe_tool_call(func_name: str, *args):
    try:
        return globals()[func_name](*args)
    except Exception as e:
        return f"调用{func_name}失败:{str(e)}"

3. 复杂查询处理

def process_complex_query(query):
    try:
        response = agent.invoke({
            "input": query,
            "context": {"time": "morning", "location": "Shanghai"}
        })
        return response["output"]
    except Exception as e:
        return f"处理查询失败:{str(e)}"

应用场景

  1. 智能助手

    • 个人助理
    • 客服系统
    • 信息查询
  2. 自动化工作流

    • 数据处理
    • 系统集成
    • 任务调度
  3. 决策支持

    • 数据分析
    • 推荐系统
    • 风险评估

注意事项

  1. 性能优化

    • 避免过多的工具调用
    • 合理设置超时时间
    • 使用缓存机制
  2. 安全性

    • 输入验证
    • 权限控制
    • 资源限制
  3. 可维护性

    • 清晰的工具文档
    • 模块化设计
    • 日志记录

结论

LangChain的Agent系统提供了一种智能的方式来组合和使用工具函数,通过合理的配置和使用,可以构建出强大的AI应用系统。

参考资料

  • LangChain官方文档
  • OpenAI Functions文档
  • Agent系统最佳实践指南

通过本文的介绍,你应该能够理解如何使用LangChain的Agent系统来构建智能的工具调用流程,为AI应用添加更多的实用功能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值