作者:祝愿我上前一班
声明:本文章主体由本人所创 源文件为LaTex格式 使用Claude 3.7进行格式转换(LaTex -> Markdown)LaTex源码可见文末 编译后的PDF可下载
文章目录
引言
分圆多项式(Cyclotomic Polynomial)是数论、代数学和群论中一个重要而基础的概念。它与单位根、代数数域和有限域理论等领域有着密切的联系。
分圆多项式的研究可以追溯到18世纪,当时Gauss在研究正多边形尺规作图问题时首次系统地研究了它们。“分圆"一词来源于希腊语,意为"分割圆”,反映了这类多项式与单位圆上的点的紧密联系。在代数数论的发展中,Kronecker、Weber和Hilbert等数学家进一步揭示了分圆多项式在数域理论中的核心地位。
在现代数学和计算机科学中,分圆多项式在密码学、编码理论、数字信号处理等领域有着广泛应用。从理论角度看,它们是连接代数、几何和数论的重要桥梁;从应用角度看,它们为解决实际问题提供了有力工具。
本文将系统地介绍分圆多项式的定义、性质、计算方法以及应用,并详细解析相关的数学符号和函数。
基本定义
单位根与本原单位根
单位根是复平面上单位圆周上的点,满足方程 z n = 1 z^n = 1 zn=1 的复数 z z z。对于每个正整数 n n n,存在 n n n 个 n n n 次单位根,表示为:
ω k = e 2 π i k / n = cos ( 2 π k / n ) + i sin ( 2 π k / n ) , k = 0 , 1 , 2 , … , n − 1 \omega_k = e^{2\pi i k/n} = \cos(2\pi k/n) + i\sin(2\pi k/n), \quad k = 0, 1, 2, \ldots, n-1 ωk=e2πik/n=cos(2πk/n)+isin(2πk/n),k=0,1,2,…,n−1
其中, e 2 π i = cos ( 2 π ) + i sin ( 2 π ) = 1 e^{2\pi i} = \cos(2\pi) + i\sin(2\pi) = 1 e2πi=cos(2π)+isin(2π)=1,即 e 2 π i e^{2\pi i} e2πi 表示旋转 2 π 2\pi 2π 弧度(一周)。
从几何角度看, n n n 次单位根在复平面上构成了正 n n n 边形的顶点,它们均匀分布在单位圆上。例如,4次单位根: 1 , i , − 1 , − i 1, i, -1, -i 1,i,−1,−i 分别对应复平面上的点 ( 1 , 0 ) , ( 0 , 1 ) , ( − 1 , 0 ) , ( 0 , − 1 ) (1,0), (0,1), (-1,0), (0,-1) (1,0),(0,1),(−1,0),(0,−1),形成了一个正方形。
本原单位根是指那些阶恰好为 n n n 的单位根,即满足 z n = 1 z^n = 1 zn=1 但对于任何 1 ≤ m < n 1 \leq m < n 1≤m<n,都有 z m ≠ 1 z^m \neq 1 zm=1 的复数 z z z。 n n n 次本原单位根的个数等于欧拉函数 φ ( n ) \varphi(n) φ(n) 的值。
例如,对于 n = 8 n=8 n=8,8次单位根是 { e 2 π i ⋅ k / 8 ∣ k = 0 , 1 , … , 7 } \{e^{2\pi i \cdot k/8} | k = 0, 1, \ldots, 7\} {e2πi⋅k/8∣k=0,1,…,7}。其中:
- k = 0 k=0 k=0 得到 ω 0 = 1 \omega_0 = 1 ω0=1,它是1次单位根
- k = 2 , 6 k=2,6 k=2,6 得到 ω 2 = i , ω 6 = − i \omega_2 = i, \omega_6 = -i ω2=i,ω6=−i,它们是4次单位根
- k = 4 k=4 k=4 得到 ω 4 = − 1 \omega_4 = -1 ω4=−1,它是2次单位根
- k = 1 , 3 , 5 , 7 k=1,3,5,7 k=1,3,5,7 得到 ω 1 , ω 3 , ω 5 , ω 7 \omega_1, \omega_3, \omega_5, \omega_7 ω1,ω3,ω5,ω7,它们是8次本原单位根
分圆多项式的定义
第 n n n 个分圆多项式 Φ n ( x ) \Phi_n(x) Φn(x) 定义为所有 n n n 次本原单位根的最小多项式,即:
Φ n ( x ) = ∏ 1 ≤ k ≤ n gcd ( k , n ) = 1 ( x − e 2 π i k / n ) \Phi_n(x) = \prod_{\substack{1 \leq k \leq n \\ \gcd(k,n)=1}} (x - e^{2\pi i k/n}) Φn(x)=1≤k≤ngcd(k,n)=1∏(x−e2πik/n)
其中, gcd ( k , n ) \gcd(k,n) gcd(k,n) 表示 k k k 和 n n n 的最大公约数,条件 gcd ( k , n ) = 1 \gcd(k,n)=1 gcd(k,n)=1 确保我们只选取本原单位根。
为了更好地理解这个定义,我们来看几个具体例子:
例1: 对于
n
=
1
n=1
n=1,唯一的1次单位根是
ω
0
=
1
\omega_0 = 1
ω0=1,它也是1次本原单位根。因此:
Φ
1
(
x
)
=
x
−
1
\Phi_1(x) = x - 1
Φ1(x)=x−1
例2: 对于
n
=
4
n=4
n=4,4次单位根为
1
,
i
,
−
1
,
−
i
1, i, -1, -i
1,i,−1,−i。其中,
1
1
1 是1次单位根,
−
1
-1
−1 是2次单位根,而
i
i
i 和
−
i
-i
−i 是4次本原单位根(因为它们的阶恰好为4)。因此:
Φ
4
(
x
)
=
(
x
−
i
)
(
x
−
(
−
i
)
)
=
x
2
−
(
i
+
(
−
i
)
)
x
+
i
⋅
(
−
i
)
=
x
2
+
1
\Phi_4(x) = (x-i)(x-(-i)) = x^2 - (i+(-i))x + i \cdot (-i) = x^2 + 1
Φ4(x)=(x−i)(x−(−i))=x2−(i+(−i))x+i⋅(−i)=x2+1
这种构造方式确保了 Φ n ( x ) \Phi_n(x) Φn(x) 是首一不可约多项式(系数为整数且首项系数为1),且它的根恰好是所有 n n n 次本原单位根。
补充解释: 从代数的角度看, Φ n ( x ) \Phi_n(x) Φn(x) 是将 n n n 次本原单位根 ζ \zeta ζ 添加到有理数域 Q \mathbb{Q} Q 后得到的扩域 Q ( ζ ) \mathbb{Q}(\zeta) Q(ζ) 上 ζ \zeta ζ 的最小多项式。这也是分圆多项式在代数数论中重要性的根源。
分圆多项式的性质
分圆多项式具有许多重要而优美的性质:
整系数性质
尽管分圆多项式是通过复数单位根定义的,但 Φ n ( x ) \Phi_n(x) Φn(x) 的系数全部是整数。这一性质并不直观,但可以通过代数理论证明。
证明思路: 该性质可通过归纳法证明。关键在于利用 Φ n ( x ) \Phi_n(x) Φn(x) 的递推定义和Galois理论。特别地,对于任意 n n n 次本原单位根 ζ \zeta ζ,其所有共轭元素也是 n n n 次本原单位根。因此, Φ n ( x ) \Phi_n(x) Φn(x) 可以看作是Galois群作用下的轨道多项式,而这样的多项式具有整系数。
更直观地,
Φ
n
(
x
)
\Phi_n(x)
Φn(x) 可以表示为:
Φ
n
(
x
)
=
∑
k
=
0
φ
(
n
)
a
k
x
k
\Phi_n(x) = \sum_{k=0}^{\varphi(n)} a_k x^k
Φn(x)=k=0∑φ(n)akxk
其中系数 a k a_k ak 可以通过递推关系和莫比乌斯函数计算得到。虽然系数计算相对复杂,但它们确实都是整数。
次数
Φ n ( x ) \Phi_n(x) Φn(x) 的次数等于 φ ( n ) \varphi(n) φ(n),即欧拉函数值,表示小于等于 n n n 且与 n n n 互质的正整数个数。
这一性质直接来源于分圆多项式的定义。由于 Φ n ( x ) \Phi_n(x) Φn(x) 是所有 n n n 次本原单位根的最小多项式,而本原单位根的个数恰好是 φ ( n ) \varphi(n) φ(n),因此 Φ n ( x ) \Phi_n(x) Φn(x) 的次数为 φ ( n ) \varphi(n) φ(n)。
例如:
- φ ( 1 ) = 1 \varphi(1) = 1 φ(1)=1,对应 Φ 1 ( x ) = x − 1 \Phi_1(x) = x - 1 Φ1(x)=x−1 的次数为1
- φ ( 4 ) = 2 \varphi(4) = 2 φ(4)=2,对应 Φ 4 ( x ) = x 2 + 1 \Phi_4(x) = x^2 + 1 Φ4(x)=x2+1 的次数为2
- φ ( 5 ) = 4 \varphi(5) = 4 φ(5)=4,对应 Φ 5 ( x ) = x 4 + x 3 + x 2 + x + 1 \Phi_5(x) = x^4 + x^3 + x^2 + x + 1 Φ5(x)=x4+x3+x2+x+1 的次数为4
递推关系
分圆多项式之间存在重要的递推关系:
x n − 1 = ∏ d ∣ n Φ d ( x ) x^n - 1 = \prod_{d|n} \Phi_d(x) xn−1=d∣n∏Φd(x)
其中 d d d 遍历 n n n 的所有正因子。通过这一关系,可以递推计算分圆多项式:
Φ n ( x ) = x n − 1 ∏ d ∣ n , d < n Φ d ( x ) \Phi_n(x) = \frac{x^n - 1}{\prod_{d|n, d<n} \Phi_d(x)} Φn(x)=∏d∣n,d<nΦd(x)xn−1
这一递推关系是计算分圆多项式最常用的方法,我们将在后续计算方法部分详细介绍其应用。
递推关系证明思路:
注意到 x n − 1 = ∏ k = 0 n − 1 ( x − e 2 π i k / n ) x^n - 1 = \prod_{k=0}^{n-1} (x - e^{2\pi i k/n}) xn−1=∏k=0n−1(x−e2πik/n),即 x n − 1 x^n - 1 xn−1 的根是所有 n n n 次单位根。而每个 n n n 次单位根 ω \omega ω 都是某个 d ∣ n d|n d∣n 的 d d d 次本原单位根。因此, x n − 1 x^n - 1 xn−1 的因式分解应该包括所有 d ∣ n d|n d∣n 的 Φ d ( x ) \Phi_d(x) Φd(x)。
对称性
Φ n ( x ) \Phi_n(x) Φn(x) 是自倒多项式,即:
Φ n ( x ) = x φ ( n ) Φ n ( 1 / x ) \Phi_n(x) = x^{\varphi(n)}\Phi_n(1/x) Φn(x)=xφ(n)Φn(1/x)
这意味着如果 α \alpha α 是 Φ n ( x ) \Phi_n(x) Φn(x) 的根,那么 1 / α 1/\alpha 1/α 也是它的根。
这种对称性来源于本原单位根的一个重要性质:如果 ζ \zeta ζ 是 n n n 次本原单位根,那么 ζ − 1 = ζ ‾ \zeta^{-1} = \overline{\zeta} ζ−1=ζ( ζ \zeta ζ 的复共轭)也是 n n n 次本原单位根。
例: 考虑
Φ
3
(
x
)
=
x
2
+
x
+
1
\Phi_3(x) = x^2 + x + 1
Φ3(x)=x2+x+1,我们可以验证其对称性:
x
φ
(
3
)
Φ
3
(
1
/
x
)
=
x
2
⋅
(
(
1
/
x
)
2
+
(
1
/
x
)
+
1
)
=
x
2
⋅
(
1
x
2
+
1
x
+
1
)
=
1
+
x
+
x
2
=
x
2
+
x
+
1
=
Φ
3
(
x
)
x^{\varphi(3)}\Phi_3(1/x) = x^2 \cdot \left((1/x)^2 + (1/x) + 1\right) = x^2 \cdot \left(\frac{1}{x^2} + \frac{1}{x} + 1\right) = 1 + x + x^2 = x^2 + x + 1 = \Phi_3(x)
xφ(3)Φ3(1/x)=x2⋅((1/x)2+(1/x)+1)=x2⋅(x21+x1+1)=1+x+x2=x2+x+1=Φ3(x)
这种对称性对分圆多项式的系数有重要影响。例如,如果 Φ n ( x ) \Phi_n(x) Φn(x) 的次数为 m = φ ( n ) m = \varphi(n) m=φ(n),则其系数满足 a i = a m − i a_i = a_{m-i} ai=am−i(对于 n > 1 n > 1 n>1 且 n n n 不是2的幂时)。
首几项分圆多项式
为了直观理解,列出前几个分圆多项式:
- Φ 1 ( x ) = x − 1 \Phi_1(x) = x - 1 Φ1(x)=x−1
- Φ 2 ( x ) = x + 1 \Phi_2(x) = x + 1 Φ2(x)=x+1
- Φ 3 ( x ) = x 2 + x + 1 \Phi_3(x) = x^2 + x + 1 Φ3(x)=x2+x+1
- Φ 4 ( x ) = x 2 + 1 \Phi_4(x) = x^2 + 1 Φ4(x)=x2+1
- Φ 5 ( x ) = x 4 + x 3 + x 2 + x + 1 \Phi_5(x) = x^4 + x^3 + x^2 + x + 1 Φ5(x)=x4+x3+x2+x+1
- Φ 6 ( x ) = x 2 − x + 1 \Phi_6(x) = x^2 - x + 1 Φ6(x)=x2−x+1
- Φ 7 ( x ) = x 6 + x 5 + x 4 + x 3 + x 2 + x + 1 \Phi_7(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 Φ7(x)=x6+x5+x4+x3+x2+x+1
- Φ 8 ( x ) = x 4 + 1 \Phi_8(x) = x^4 + 1 Φ8(x)=x4+1
- Φ 9 ( x ) = x 6 + x 3 + 1 \Phi_9(x) = x^6 + x^3 + 1 Φ9(x)=x6+x3+1
- Φ 10 ( x ) = x 4 − x 3 + x 2 − x + 1 \Phi_{10}(x) = x^4 - x^3 + x^2 - x + 1 Φ10(x)=x4−x3+x2−x+1
- Φ 11 ( x ) = x 10 + x 9 + x 8 + x 7 + x 6 + x 5 + x 4 + x 3 + x 2 + x + 1 \Phi_{11}(x) = x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 Φ11(x)=x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1
- Φ 12 ( x ) = x 4 − x 2 + 1 \Phi_{12}(x) = x^4 - x^2 + 1 Φ12(x)=x4−x2+1
观察这些多项式,我们可以发现一些有趣的模式:
- 当 n n n 是质数 p p p 时, Φ p ( x ) = x p − 1 + x p − 2 + ⋯ + x + 1 \Phi_p(x) = x^{p-1} + x^{p-2} + \cdots + x + 1 Φp(x)=xp−1+xp−2+⋯+x+1
- 当 n = 2 p n = 2p n=2p 且 p p p 是奇质数时, Φ 2 p ( x ) = Φ p ( − x ) \Phi_{2p}(x) = \Phi_p(-x) Φ2p(x)=Φp(−x)
- 当 n = p k n = p^k n=pk 且 p p p 是质数时, Φ p k ( x ) = Φ p ( x p k − 1 ) \Phi_{p^k}(x) = \Phi_p(x^{p^{k-1}}) Φpk(x)=Φp(xpk−1)
这些观察可以通过分圆多项式的基本性质证明,也为计算更高阶的分圆多项式提供了捷径。
莫比乌斯反演表达式
利用莫比乌斯反演原理,分圆多项式可以表示为:
Φ n ( x ) = ∏ d ∣ n ( x n / d − 1 ) μ ( d ) \Phi_n(x) = \prod_{d|n} (x^{n/d} - 1)^{\mu(d)} Φn(x)=d∣n∏(xn/d−1)μ(d)
其中 μ ( d ) \mu(d) μ(d) 是莫比乌斯函数。
这一表达式为直接计算分圆多项式提供了一种方法,特别是当我们已经知道莫比乌斯函数值时。莫比乌斯反演公式在数论中有广泛应用,这里它为分圆多项式提供了一个优雅的代数表达。
计算分圆多项式的方法
方法一:直接定义法
根据定义,可以通过以下步骤计算 Φ n ( x ) \Phi_n(x) Φn(x):
- 确定满足 gcd ( k , n ) = 1 \gcd(k,n)=1 gcd(k,n)=1 的所有 k k k 值( 1 ≤ k ≤ n 1 \leq k \leq n 1≤k≤n)
- 计算对应的本原单位根 ω k = e 2 π i k / n \omega_k = e^{2\pi i k/n} ωk=e2πik/n
- 构造多项式 Φ n ( x ) = ∏ ( x − ω k ) \Phi_n(x) = \prod (x - \omega_k) Φn(x)=∏(x−ωk)
- 展开并化简
然而,这种方法在 n n n 较大时计算复杂度高,且需要处理复数运算,容易引入数值误差。因此,实际应用中通常采用其他方法。
方法二:递推法
利用递推关系可以更有效地计算分圆多项式:
- 从已知的 Φ 1 ( x ) = x − 1 \Phi_1(x) = x - 1 Φ1(x)=x−1 开始
- 利用公式 Φ n ( x ) = x n − 1 ∏ d ∣ n , d < n Φ d ( x ) \Phi_n(x) = \frac{x^n - 1}{\prod_{d|n, d<n} \Phi_d(x)} Φn(x)=∏d∣n,d<nΦd(x)xn−1 递推计算
算法实现:
function 计算分圆多项式(n)
若 n = 1,返回 x - 1
设 P(x) = x^n - 1
对于 n 的每个真因子 d(即 d|n 且 d<n)
P(x) = P(x) / 计算分圆多项式(d)
返回 P(x)
复杂度分析: 该递推算法的时间复杂度取决于 n n n 的因子数量和多项式除法的复杂度。若 n n n 有 d ( n ) d(n) d(n) 个因子( d ( n ) d(n) d(n) 是除数函数),则该算法的时间复杂度约为 O ( d ( n ) ⋅ n 2 ) O(d(n) \cdot n^2) O(d(n)⋅n2)。这比直接使用定义计算更高效,特别是对于较大的 n n n 值。
以下是一个完整的Python实现,使用SymPy库处理符号计算:
from sympy import symbols, Poly, div, factor
from math import gcd
def cyclotomic_polynomial_recursive(n):
"""使用递推方法计算第n个分圆多项式"""
x = symbols('x')
if n == 1:
return Poly(x - 1, x)
# 计算x^n - 1
result = Poly(x**n - 1, x)
# 对每个n的真因子d,除以Φ_d(x)
for d in range(1, n):
if n % d == 0: # d是n的因子
divisor = cyclotomic_polynomial_recursive(d)
q, r = div(result, divisor)
result = q
return result
# 测试前几个分圆多项式
for i in range(1, 13):
print(f"Φ_{i}(x) = {cyclotomic_polynomial_recursive(i)}")
方法三:莫比乌斯反演法
利用莫比乌斯反演公式:
Φ n ( x ) = ∏ d ∣ n ( x n / d − 1 ) μ ( d ) \Phi_n(x) = \prod_{d|n} (x^{n/d} - 1)^{\mu(d)} Φn(x)=d∣n∏(xn/d−1)μ(d)
可以直接计算分圆多项式。
这种方法的优势在于它可以并行计算,不需要按顺序递推。但它需要预先计算莫比乌斯函数值,对于大的 n n n 可能会有计算挑战。
from sympy import symbols, prod, Poly
from sympy.ntheory import mobius
def cyclotomic_polynomial_mobius(n):
"""使用莫比乌斯反演计算第n个分圆多项式"""
x = symbols('x')
# 找出n的所有因子
factors = []
for d in range(1, n + 1):
if n % d == 0:
factors.append(d)
# 应用莫比乌斯反演公式
result = 1
for d in factors:
mu_d = mobius(d)
if mu_d != 0: # 跳过μ(d)=0的情况
term = (x**(n//d) - 1)**(mu_d)
result *= term
return Poly(result, x)
# 测试
for i in range(1, 7):
print(f"Φ_{i}(x) = {cyclotomic_polynomial_mobius(i)}")
实例计算: Φ 6 ( x ) \Phi_6(x) Φ6(x)
-
6的因子有:1, 2, 3, 6
-
计算莫比乌斯函数值: μ ( 1 ) = 1 \mu(1)=1 μ(1)=1, μ ( 2 ) = − 1 \mu(2)=-1 μ(2)=−1, μ ( 3 ) = − 1 \mu(3)=-1 μ(3)=−1, μ ( 6 ) = 1 \mu(6)=1 μ(6)=1
-
代入公式:
Φ 6 ( x ) = ( x 6 / 1 − 1 ) μ ( 1 ) ⋅ ( x 6 / 2 − 1 ) μ ( 2 ) ⋅ ( x 6 / 3 − 1 ) μ ( 3 ) ⋅ ( x 6 / 6 − 1 ) μ ( 6 ) \Phi_6(x) = (x^{6/1} - 1)^{\mu(1)} \cdot (x^{6/2} - 1)^{\mu(2)} \cdot (x^{6/3} - 1)^{\mu(3)} \cdot (x^{6/6} - 1)^{\mu(6)} Φ6(x)=(x6/1−1)μ(1)⋅(x6/2−1)μ(2)⋅(x6/3−1)μ(3)⋅(x6/6−1)μ(6)
= ( x 6 − 1 ) 1 ⋅ ( x 3 − 1 ) − 1 ⋅ ( x 2 − 1 ) − 1 ⋅ ( x − 1 ) 1 = (x^6 - 1)^1 \cdot (x^3 - 1)^{-1} \cdot (x^2 - 1)^{-1} \cdot (x - 1)^1 =(x6−1)1⋅(x3−1)−1⋅(x2−1)−1⋅(x−1)1
= ( x 6 − 1 ) ( x − 1 ) ( x 3 − 1 ) ( x 2 − 1 ) = \frac{(x^6 - 1)(x - 1)}{(x^3 - 1)(x^2 - 1)} =(x3−1)(x2−1)(x6−1)(x−1) -
计算:
( x 6 − 1 ) ( x − 1 ) ( x 3 − 1 ) ( x 2 − 1 ) = ( x 3 − 1 ) ( x 3 + 1 ) ( x − 1 ) ( x 3 − 1 ) ( x − 1 ) ( x + 1 ) = x 3 + 1 x + 1 = x 2 − x + 1 \frac{(x^6 - 1)(x - 1)}{(x^3 - 1)(x^2 - 1)} = \frac{(x^3 - 1)(x^3 + 1)(x-1)}{(x^3 - 1)(x-1)(x+1)} = \frac{x^3 + 1}{x + 1} = x^2 - x + 1 (x3−1)(x2−1)(x6−1)(x−1)=(x3−1)(x−1)(x+1)(x3−1)(x3+1)(x−1)=x+1x3+1=x2−x+1
特殊情况下的公式
对于某些特殊形式的 n n n,存在计算 Φ n ( x ) \Phi_n(x) Φn(x) 的简化公式:
-
当 n = p n = p n=p 是质数时:
Φ p ( x ) = x p − 1 x − 1 = x p − 1 + x p − 2 + ⋯ + x + 1 \Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \cdots + x + 1 Φp(x)=x−1xp−1=xp−1+xp−2+⋯+x+1 -
当 n = p m n = p^m n=pm 是质数的幂时:
Φ p m ( x ) = Φ p ( x p m − 1 ) \Phi_{p^m}(x) = \Phi_p(x^{p^{m-1}}) Φpm(x)=Φp(xpm−1) -
当 n = 2 p n = 2p n=2p 且 p p p 是奇质数时:
Φ 2 p ( x ) = Φ p ( − x ) \Phi_{2p}(x) = \Phi_p(-x) Φ2p(x)=Φp(−x)
这些公式可以大大简化特定情况下的计算。例如,利用公式1,我们立即知道:
Φ
5
(
x
)
=
x
4
+
x
3
+
x
2
+
x
+
1
\Phi_5(x) = x^4 + x^3 + x^2 + x + 1
Φ5(x)=x4+x3+x2+x+1
然后利用公式3,可以得到:
Φ
10
(
x
)
=
Φ
5
(
−
x
)
=
(
−
x
)
4
+
(
−
x
)
3
+
(
−
x
)
2
+
(
−
x
)
+
1
=
x
4
−
x
3
+
x
2
−
x
+
1
\Phi_{10}(x) = \Phi_5(-x) = (-x)^4 + (-x)^3 + (-x)^2 + (-x) + 1 = x^4 - x^3 + x^2 - x + 1
Φ10(x)=Φ5(−x)=(−x)4+(−x)3+(−x)2+(−x)+1=x4−x3+x2−x+1
分圆多项式的应用
代数数论
分圆多项式是研究分圆域和代数整数环的基础工具。分圆域 Q ( ζ n ) \mathbb{Q}(\zeta_n) Q(ζn)(其中 ζ n \zeta_n ζn 是原根)的代数结构可以通过 Φ n ( x ) \Phi_n(x) Φn(x) 来研究。
分圆域的关键性质包括:
-
分圆域 Q ( ζ n ) \mathbb{Q}(\zeta_n) Q(ζn) 是 Q \mathbb{Q} Q 上的伽罗瓦扩张,且其伽罗瓦群同构于 ( Z / n Z ) ∗ (\mathbb{Z}/n\mathbb{Z})^* (Z/nZ)∗,即模 n n n 的简化剩余类乘法群。
-
分圆域的整环由 Z [ ζ n ] \mathbb{Z}[\zeta_n] Z[ζn] 给出,这是研究代数整数的重要对象。
-
分圆域在Kronecker-Weber定理中起核心作用,该定理指出任何阿贝尔扩张都包含在某个分圆域中。
这些深刻联系使分圆多项式成为代数数论研究的核心工具。
有限域理论
在有限域的构造和分析中,分圆多项式起着核心作用。例如,对于质数幂 q q q,寻找 F q \mathbb{F}_q Fq 上的本原多项式与分圆多项式密切相关。
特别地, Φ n ( x ) \Phi_n(x) Φn(x) 在 F p \mathbb{F}_p Fp 上的分解提供了对 p p p 模 n n n 的乘法阶的重要信息,这对构造特定性质的有限域至关重要。
例如,要构造 F 2 4 \mathbb{F}_{2^4} F24,我们可以使用 Φ 15 ( x ) m o d 2 = x 4 + x + 1 \Phi_{15}(x) \bmod 2 = x^4 + x + 1 Φ15(x)mod2=x4+x+1 作为定义多项式,因为它在 F 2 \mathbb{F}_2 F2 上是不可约的。
编码理论
循环码和BCH码的设计与分析依赖于分圆多项式的性质。这些码在数字通信和存储系统中有广泛应用。
具体应用包括:
-
BCH码的生成多项式是某些分圆多项式的乘积,其纠错能力与所选分圆多项式直接相关。
-
Reed-Solomon码利用分圆多项式的性质设计高效纠错编码,广泛应用于CD、DVD、QR码和深空通信等。
-
循环冗余校验(CRC)的设计也利用了分圆多项式的性质,用于检测数据传输中的错误。
密码学
分圆多项式在密码学中的应用主要体现在以下几个方面:
1. 理想格密码学: 基于理想格的密码方案,如NTRU加密系统,利用分圆多项式定义的环 Z [ x ] / ( Φ n ( x ) ) \mathbb{Z}[x]/(\Phi_n(x)) Z[x]/(Φn(x)) 作为密码学操作的基础结构。这类系统被认为是抵抗量子计算攻击的潜在候选者。
2. 同态加密: 某些全同态加密方案,如BGV方案,使用分圆多项式环作为明文和密文空间,利用其代数结构支持加密状态下的计算。
3. 安全性分析: 分圆多项式的不可约性和其他代数性质直接影响了许多基于环的密码系统的安全性参数选择。
这些应用使得分圆多项式在现代密码学研究中具有重要地位,特别是在后量子密码学领域。
离散傅里叶变换
在FFT算法中, n n n 次单位根 ω n = e 2 π i / n \omega_n = e^{2\pi i/n} ωn=e2πi/n 及其幂起着核心作用。通过选择适当的 n n n(通常是2的幂),可以将 O ( n 2 ) O(n^2) O(n2) 复杂度的离散傅里叶变换降低到 O ( n log n ) O(n\log n) O(nlogn)。
分圆多项式与FFT的关系体现在:
1. 单位根的代数性质: FFT算法利用单位根满足 ω n n = 1 \omega_n^n = 1 ωnn=1 和 ω n n / 2 = − 1 \omega_n^{n/2} = -1 ωnn/2=−1(当 n n n 是2的幂时)等性质,这些性质直接与分圆多项式的结构相关。
2. 多项式评估与插值: FFT算法本质上是在单位根处评估多项式,然后通过插值重构多项式。这一过程与分圆多项式的构造过程有深刻联系。
3. 循环卷积: 通过FFT可高效计算多项式乘法,即两序列的循环卷积,这在 Z [ x ] / ( Φ n ( x ) ) \mathbb{Z}[x]/(\Phi_n(x)) Z[x]/(Φn(x)) 环中有直接的代数解释。
相关数学符号与函数
重要符号
符号 | 名称 | 含义 |
---|---|---|
Φ n ( x ) \Phi_n(x) Φn(x) | 分圆多项式 | 第 n n n 个分圭多项式 |
φ ( n ) \varphi(n) φ(n) | 欧拉函数 | 小于等于 n n n 且与 n n n 互质的正整数个数 |
μ ( n ) \mu(n) μ(n) | 莫比乌斯函数 | 用于莫比乌斯反演的重要数论函数 |
gcd ( a , b ) \gcd(a,b) gcd(a,b) | 最大公约数 | a a a 和 b b b 的最大公约数 |
∏ \prod ∏ | 连乘符号 | 表示一系列元素的乘积 |
∑ \sum ∑ | 求和符号 | 表示一系列元素的和 |
∣ \mid ∣ | 整除符号 | a ∣ b a\mid b a∣b 表示 a a a 整除 b b b |
e i θ e^{i\theta} eiθ | 欧拉公式 | e i θ = cos θ + i sin θ e^{i\theta} = \cos\theta + i\sin\theta eiθ=cosθ+isinθ |
ζ n \zeta_n ζn | 原根 | n n n 次本原单位根,通常指 e 2 π i / n e^{2\pi i/n} e2πi/n |
Q ( ζ n ) \mathbb{Q}(\zeta_n) Q(ζn) | 分圆域 | 由有理数和 n n n 次原根生成的数域 |
欧拉函数 φ ( n ) \varphi(n) φ(n)
欧拉函数 φ ( n ) \varphi(n) φ(n) 计算小于等于 n n n 且与 n n n 互质的正整数个数:
- 对于质数 p p p: φ ( p ) = p − 1 \varphi(p) = p - 1 φ(p)=p−1
- 对于质数幂 p k p^k pk: φ ( p k ) = p k − p k − 1 = p k ( 1 − 1 p ) \varphi(p^k) = p^k - p^{k-1} = p^k(1 - \frac{1}{p}) φ(pk)=pk−pk−1=pk(1−p1)
- 一般情况:若 n = p 1 a 1 ⋅ p 2 a 2 ⋯ p k a k n = p_1^{a_1} \cdot p_2^{a_2} \cdots p_k^{a_k} n=p1a1⋅p2a2⋯pkak,则 φ ( n ) = n ∏ i = 1 k ( 1 − 1 p i ) \varphi(n) = n \prod_{i=1}^k (1 - \frac{1}{p_i}) φ(n)=n∏i=1k(1−pi1)
计算例子:
- φ ( 12 ) = 12 ⋅ ( 1 − 1 2 ) ⋅ ( 1 − 1 3 ) = 12 ⋅ 1 2 ⋅ 2 3 = 4 \varphi(12) = 12 \cdot (1-\frac{1}{2}) \cdot (1-\frac{1}{3}) = 12 \cdot \frac{1}{2} \cdot \frac{2}{3} = 4 φ(12)=12⋅(1−21)⋅(1−31)=12⋅21⋅32=4
- φ ( 36 ) = 36 ⋅ ( 1 − 1 2 ) ⋅ ( 1 − 1 3 ) = 36 ⋅ 1 2 ⋅ 2 3 = 12 \varphi(36) = 36 \cdot (1-\frac{1}{2}) \cdot (1-\frac{1}{3}) = 36 \cdot \frac{1}{2} \cdot \frac{2}{3} = 12 φ(36)=36⋅(1−21)⋅(1−31)=36⋅21⋅32=12
- φ ( 17 ) = 17 − 1 = 16 \varphi(17) = 17 - 1 = 16 φ(17)=17−1=16(因为17是质数)
- φ ( 25 ) = 25 ⋅ ( 1 − 1 5 ) = 25 ⋅ 4 5 = 20 \varphi(25) = 25 \cdot (1-\frac{1}{5}) = 25 \cdot \frac{4}{5} = 20 φ(25)=25⋅(1−51)=25⋅54=20(因为 25 = 5 2 25 = 5^2 25=52)
重要性质:
- 如果 m m m 和 n n n 互质,则 φ ( m n ) = φ ( m ) ⋅ φ ( n ) \varphi(mn) = \varphi(m) \cdot \varphi(n) φ(mn)=φ(m)⋅φ(n)(欧拉函数是积性函数)
- 对于任意正整数 n n n,有 ∑ d ∣ n φ ( d ) = n \sum_{d|n} \varphi(d) = n ∑d∣nφ(d)=n
- 若 p p p 是奇质数,则 φ ( 2 p ) = φ ( p ) \varphi(2p) = \varphi(p) φ(2p)=φ(p)
在分圆多项式理论中,欧拉函数 φ ( n ) \varphi(n) φ(n) 有两个核心应用:
- 确定 Φ n ( x ) \Phi_n(x) Φn(x) 的次数为 φ ( n ) \varphi(n) φ(n)
- 计算 n n n 次本原单位根的个数为 φ ( n ) \varphi(n) φ(n)
莫比乌斯函数 μ ( n ) \mu(n) μ(n)
莫比乌斯函数 μ ( n ) \mu(n) μ(n) 定义为:
- μ ( 1 ) = 1 \mu(1) = 1 μ(1)=1
- 若 n n n 含有平方因子,则 μ ( n ) = 0 \mu(n) = 0 μ(n)=0
- 若 n n n 是 k k k 个不同质数的乘积,则 μ ( n ) = ( − 1 ) k \mu(n) = (-1)^k μ(n)=(−1)k
莫比乌斯函数是数论中的重要函数,用于莫比乌斯反演公式。该公式指出,如果两个数论函数 f f f 和 g g g 满足关系 f ( n ) = ∑ d ∣ n g ( d ) f(n) = \sum_{d|n} g(d) f(n)=∑d∣ng(d),则 g ( n ) = ∑ d ∣ n μ ( n / d ) f ( d ) g(n) = \sum_{d|n} \mu(n/d)f(d) g(n)=∑d∣nμ(n/d)f(d)。
在分圆多项式的研究中,莫比乌斯函数用于表达式:
Φ
n
(
x
)
=
∏
d
∣
n
(
x
n
/
d
−
1
)
μ
(
d
)
\Phi_n(x) = \prod_{d|n} (x^{n/d} - 1)^{\mu(d)}
Φn(x)=d∣n∏(xn/d−1)μ(d)
下面是一些莫比乌斯函数值的例子:
- μ ( 1 ) = 1 \mu(1) = 1 μ(1)=1
- μ ( 2 ) = − 1 \mu(2) = -1 μ(2)=−1(包含1个质因数)
- μ ( 3 ) = − 1 \mu(3) = -1 μ(3)=−1(包含1个质因数)
- μ ( 4 ) = 0 \mu(4) = 0 μ(4)=0(含有平方因子 2 2 2^2 22)
- μ ( 5 ) = − 1 \mu(5) = -1 μ(5)=−1(包含1个质因数)
- μ ( 6 ) = 1 \mu(6) = 1 μ(6)=1(包含2个不同质因数)
- μ ( 12 ) = 0 \mu(12) = 0 μ(12)=0(含有平方因子,因为 12 = 2 2 ⋅ 3 12 = 2^2 \cdot 3 12=22⋅3)
最大公约数 gcd ( a , b ) \gcd(a,b) gcd(a,b)
最大公约数可以通过欧几里得算法(辗转相除法)计算:
function gcd(a, b)
若 b = 0,返回a
否则返回 gcd(b, a mod b)
这一算法基于性质: gcd ( a , b ) = gcd ( b , a m o d b ) \gcd(a, b) = \gcd(b, a \bmod b) gcd(a,b)=gcd(b,amodb)。
在分圆多项式定义中, gcd \gcd gcd 用于确定哪些 k k k 值对应 n n n 次本原单位根,即满足条件 gcd ( k , n ) = 1 \gcd(k, n) = 1 gcd(k,n)=1 的 k k k 值( 1 ≤ k ≤ n 1 \leq k \leq n 1≤k≤n)。
例如,对于 n = 8 n = 8 n=8:
- gcd ( 1 , 8 ) = 1 \gcd(1, 8) = 1 gcd(1,8)=1
- gcd ( 2 , 8 ) = 2 ≠ 1 \gcd(2, 8) = 2 \neq 1 gcd(2,8)=2=1
- gcd ( 3 , 8 ) = 1 \gcd(3, 8) = 1 gcd(3,8)=1
- gcd ( 4 , 8 ) = 4 ≠ 1 \gcd(4, 8) = 4 \neq 1 gcd(4,8)=4=1
- gcd ( 5 , 8 ) = 1 \gcd(5, 8) = 1 gcd(5,8)=1
- gcd ( 6 , 8 ) = 2 ≠ 1 \gcd(6, 8) = 2 \neq 1 gcd(6,8)=2=1
- gcd ( 7 , 8 ) = 1 \gcd(7, 8) = 1 gcd(7,8)=1
- gcd ( 8 , 8 ) = 8 ≠ 1 \gcd(8, 8) = 8 \neq 1 gcd(8,8)=8=1
因此,8次本原单位根对应 k = 1 , 3 , 5 , 7 k = 1, 3, 5, 7 k=1,3,5,7,总共有4个,与 φ ( 8 ) = 4 \varphi(8) = 4 φ(8)=4 一致。
实例详解
示例1:计算 Φ 3 ( x ) \Phi_3(x) Φ3(x) 的直接方法
-
确定3次本原单位根: gcd ( 1 , 3 ) = 1 \gcd(1,3)=1 gcd(1,3)=1, gcd ( 2 , 3 ) = 1 \gcd(2,3)=1 gcd(2,3)=1,所以 k = 1 , 2 k=1,2 k=1,2 对应的单位根是本原单位根。
-
计算这些单位根:
ω 1 = e 2 π i ⋅ 1 / 3 = cos ( 2 π / 3 ) + i sin ( 2 π / 3 ) = − 1 2 + i 3 2 \omega_1 = e^{2\pi i \cdot 1/3} = \cos(2\pi/3) + i\sin(2\pi/3) = -\frac{1}{2} + i\frac{\sqrt{3}}{2} ω1=e2πi⋅1/3=cos(2π/3)+isin(2π/3)=−21+i23
ω 2 = e 2 π i ⋅ 2 / 3 = cos ( 4 π / 3 ) + i sin ( 4 π / 3 ) = − 1 2 − i 3 2 \omega_2 = e^{2\pi i \cdot 2/3} = \cos(4\pi/3) + i\sin(4\pi/3) = -\frac{1}{2} - i\frac{\sqrt{3}}{2} ω2=e2πi⋅2/3=cos(4π/3)+isin(4π/3)=−21−i23 -
构造多项式:
Φ 3 ( x ) = ( x − ω 1 ) ( x − ω 2 ) = x 2 − x ( ω 1 + ω 2 ) + ω 1 ω 2 \Phi_3(x) = (x - \omega_1)(x - \omega_2) = x^2 - x(\omega_1 + \omega_2) + \omega_1\omega_2 Φ3(x)=(x−ω1)(x−ω2)=x2−x(ω1+ω2)+ω1ω2 -
计算 ω 1 + ω 2 \omega_1 + \omega_2 ω1+ω2 和 ω 1 ω 2 \omega_1\omega_2 ω1ω2:
ω 1 + ω 2 = ( − 1 2 + i 3 2 ) + ( − 1 2 − i 3 2 ) = − 1 \omega_1 + \omega_2 = (-\frac{1}{2} + i\frac{\sqrt{3}}{2}) + (-\frac{1}{2} - i\frac{\sqrt{3}}{2}) = -1 ω1+ω2=(−21+i23)+(−21−i23)=−1
ω 1 ω 2 = e 2 π i ⋅ 1 / 3 ⋅ e 2 π i ⋅ 2 / 3 = e 2 π i ⋅ 3 / 3 = e 2 π i = 1 \omega_1\omega_2 = e^{2\pi i \cdot 1/3} \cdot e^{2\pi i \cdot 2/3} = e^{2\pi i \cdot 3/3} = e^{2\pi i} = 1 ω1ω2=e2πi⋅1/3⋅e2πi⋅2/3=e2πi⋅3/3=e2πi=1 -
得到最终结果:
Φ 3 ( x ) = x 2 − x ⋅ ( − 1 ) + 1 = x 2 + x + 1 \Phi_3(x) = x^2 - x \cdot (-1) + 1 = x^2 + x + 1 Φ3(x)=x2−x⋅(−1)+1=x2+x+1
这个例子展示了如何直接从定义计算分圆多项式。虽然对于小的 n n n 值这种方法可行,但随着 n n n 增大,计算会变得非常复杂。
示例2:利用递推关系计算 Φ 6 ( x ) \Phi_6(x) Φ6(x)
-
利用公式 x 6 − 1 = ∏ d ∣ 6 Φ d ( x ) = Φ 1 ( x ) ⋅ Φ 2 ( x ) ⋅ Φ 3 ( x ) ⋅ Φ 6 ( x ) x^6 - 1 = \prod_{d|6} \Phi_d(x) = \Phi_1(x) \cdot \Phi_2(x) \cdot \Phi_3(x) \cdot \Phi_6(x) x6−1=∏d∣6Φd(x)=Φ1(x)⋅Φ2(x)⋅Φ3(x)⋅Φ6(x)
-
已知 Φ 1 ( x ) = x − 1 \Phi_1(x) = x - 1 Φ1(x)=x−1, Φ 2 ( x ) = x + 1 \Phi_2(x) = x + 1 Φ2(x)=x+1, Φ 3 ( x ) = x 2 + x + 1 \Phi_3(x) = x^2 + x + 1 Φ3(x)=x2+x+1
-
推导:
Φ 6 ( x ) = x 6 − 1 ( x − 1 ) ( x + 1 ) ( x 2 + x + 1 ) \Phi_6(x) = \frac{x^6 - 1}{(x-1)(x+1)(x^2+x+1)} Φ6(x)=(x−1)(x+1)(x2+x+1)x6−1 -
分步计算:
x 6 − 1 = ( x 3 ) 2 − 1 = ( x 3 − 1 ) ( x 3 + 1 ) x^6 - 1 = (x^3)^2 - 1 = (x^3 - 1)(x^3 + 1) x6−1=(x3)2−1=(x3−1)(x3+1)
x 3 − 1 = ( x − 1 ) ( x 2 + x + 1 ) x^3 - 1 = (x - 1)(x^2 + x + 1) x3−1=(x−1)(x2+x+1) -
代入:
Φ 6 ( x ) = ( x 3 − 1 ) ( x 3 + 1 ) ( x − 1 ) ( x + 1 ) ( x 2 + x + 1 ) = ( x − 1 ) ( x 2 + x + 1 ) ( x 3 + 1 ) ( x − 1 ) ( x + 1 ) ( x 2 + x + 1 ) = x 3 + 1 x + 1 \Phi_6(x) = \frac{(x^3 - 1)(x^3 + 1)}{(x-1)(x+1)(x^2+x+1)} = \frac{(x-1)(x^2+x+1)(x^3+1)}{(x-1)(x+1)(x^2+x+1)} = \frac{x^3+1}{x+1} Φ6(x)=(x−1)(x+1)(x2+x+1)(x3−1)(x3+1)=(x−1)(x+1)(x2+x+1)(x−1)(x2+x+1)(x3+1)=x+1x3+1 -
进行多项式长除法:
x 3 + 1 x + 1 = x 3 + x − x + 1 x + 1 = x ( x 2 + 1 ) + ( 1 − x ) x + 1 = x ( x 2 + 1 ) − ( x − 1 ) x + 1 = x 2 − x + 1 \frac{x^3+1}{x+1} = \frac{x^3+x-x+1}{x+1} = \frac{x(x^2+1) + (1-x)}{x+1} = \frac{x(x^2+1) - (x-1)}{x+1} = x^2 - x + 1 x+1x3+1=x+1x3+x−x+1=x+1x(x2+1)+(1−x)=x+1x(x2+1)−(x−1)=x2−x+1
这个例子展示了递推法的实际应用,它充分利用了已知的低阶分圆多项式结果。
示例3:利用莫比乌斯反演计算 Φ 4 ( x ) \Phi_4(x) Φ4(x)
通过公式 Φ n ( x ) = ∏ d ∣ n ( x n / d − 1 ) μ ( d ) \Phi_n(x) = \prod_{d|n} (x^{n/d} - 1)^{\mu(d)} Φn(x)=∏d∣n(xn/d−1)μ(d):
-
确定4的所有因子:1, 2, 4
-
计算莫比乌斯函数值: μ ( 1 ) = 1 \mu(1)=1 μ(1)=1, μ ( 2 ) = − 1 \mu(2)=-1 μ(2)=−1, μ ( 4 ) = 0 \mu(4)=0 μ(4)=0
-
代入公式:
Φ 4 ( x ) = ( x 4 / 1 − 1 ) μ ( 1 ) ⋅ ( x 4 / 2 − 1 ) μ ( 2 ) ⋅ ( x 4 / 4 − 1 ) μ ( 4 ) \Phi_4(x) = (x^{4/1} - 1)^{\mu(1)} \cdot (x^{4/2} - 1)^{\mu(2)} \cdot (x^{4/4} - 1)^{\mu(4)} Φ4(x)=(x4/1−1)μ(1)⋅(x4/2−1)μ(2)⋅(x4/4−1)μ(4)
= ( x 4 − 1 ) 1 ⋅ ( x 2 − 1 ) − 1 ⋅ ( x − 1 ) 0 = x 4 − 1 x 2 − 1 = (x^4 - 1)^1 \cdot (x^2 - 1)^{-1} \cdot (x - 1)^0 = \frac{x^4 - 1}{x^2 - 1} =(x4−1)1⋅(x2−1)−1⋅(x−1)0=x2−1x4−1 -
分解计算:
x 4 − 1 x 2 − 1 = ( x 2 ) 2 − 1 x 2 − 1 = ( x 2 − 1 ) ( x 2 + 1 ) x 2 − 1 = x 2 + 1 \frac{x^4 - 1}{x^2 - 1} = \frac{(x^2)^2 - 1}{x^2 - 1} = \frac{(x^2-1)(x^2+1)}{x^2-1} = x^2 + 1 x2−1x4−1=x2−1(x2)2−1=x2−1(x2−1)(x2+1)=x2+1
这个例子展示了莫比乌斯反演公式的应用。该方法的优势在于可以直接计算任意 n n n 的分圆多项式,而不需要先计算低阶多项式。
扩展练习与应用实例
为了加深对分圆多项式的理解,下面提供一些扩展练习和应用实例:
扩展练习
-
计算 Φ 10 ( x ) \Phi_{10}(x) Φ10(x),并验证其整系数性质和对称性。
-
证明对于任意素数 p p p, Φ p ( x ) = x p − 1 x − 1 = x p − 1 + x p − 2 + ⋯ + x + 1 \Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \cdots + x + 1 Φp(x)=x−1xp−1=xp−1+xp−2+⋯+x+1。
-
证明对于素数 p p p 和正整数 n n n,如果 p p p 不整除 n n n,则 Φ p n ( x ) = Φ n ( x p ) / Φ n ( x ) \Phi_{pn}(x) = \Phi_n(x^p)/\Phi_n(x) Φpn(x)=Φn(xp)/Φn(x)。
-
验证当 n = p k n = p^k n=pk( p p p 为素数, k ≥ 1 k \geq 1 k≥1)时, Φ p k ( x ) = Φ p ( x p k − 1 ) \Phi_{p^k}(x) = \Phi_p(x^{p^{k-1}}) Φpk(x)=Φp(xpk−1)。
-
计算前15个分圆多项式,并观察其系数模式。
应用实例:有限域构造
我们可以利用分圆多项式构造有限域 F p n \mathbb{F}_{p^n} Fpn。具体步骤如下:
- 选择一个素数 p p p 和正整数 n n n。
- 找到一个 n n n 次不可约多项式 f ( x ) ∈ F p [ x ] f(x) \in \mathbb{F}_p[x] f(x)∈Fp[x]。分圆多项式 Φ m ( x ) \Phi_m(x) Φm(x) 在满足特定条件时可以用作此不可约多项式。
- 构造商环 F p [ x ] / ( f ( x ) ) \mathbb{F}_p[x]/(f(x)) Fp[x]/(f(x)),它是具有 p n p^n pn 个元素的有限域。
例: 构造 F 2 4 \mathbb{F}_{2^4} F24
- 我们需要在 F 2 [ x ] \mathbb{F}_2[x] F2[x] 中找到一个4次不可约多项式。
- 可以验证 Φ 15 ( x ) m o d 2 = x 4 + x + 1 \Phi_{15}(x) \bmod 2 = x^4 + x + 1 Φ15(x)mod2=x4+x+1 在 F 2 \mathbb{F}_2 F2 上是不可约的。
- 因此 F 2 4 ≅ F 2 [ x ] / ( x 4 + x + 1 ) \mathbb{F}_{2^4} \cong \mathbb{F}_2[x]/(x^4 + x + 1) F24≅F2[x]/(x4+x+1)。
这个有限域有16个元素,可以表示为 { 0 , 1 , α , α 2 , . . . , α 14 } \{0, 1, \alpha, \alpha^2, ..., \alpha^{14}\} {0,1,α,α2,...,α14},其中 α \alpha α 是 x 4 + x + 1 x^4 + x + 1 x4+x+1 的一个根。
应用实例:密码系统中的分圆多项式
以下是一个简化的基于分圆多项式的加密方案示例,类似于一些后量子密码系统的基本构造:
- 选择一个合适的 n n n,通常是2的幂,例如 n = 256 n = 256 n=256。
- 使用环 R = Z [ x ] / ( Φ n ( x ) + 1 ) R = \mathbb{Z}[x]/(\Phi_n(x) + 1) R=Z[x]/(Φn(x)+1)。
- 在 R R R 中选择一个"小"元素 s s s 作为私钥。
- 公钥生成:选择随机多项式 a ∈ R a \in R a∈R 和一个小的误差多项式 e e e,计算 b = a ⋅ s + e b = a \cdot s + e b=a⋅s+e。
- 公钥是 ( a , b ) (a, b) (a,b),私钥是 s s s。
- 加密消息 m m m(比特):选择小的随机多项式 r , e 1 , e 2 r, e_1, e_2 r,e1,e2,计算密文 ( c 1 , c 2 ) = ( a ⋅ r + e 1 , b ⋅ r + e 2 + m ⋅ ⌊ q / 2 ⌋ ) (c_1, c_2) = (a \cdot r + e_1, b \cdot r + e_2 + m \cdot \lfloor q/2 \rfloor) (c1,c2)=(a⋅r+e1,b⋅r+e2+m⋅⌊q/2⌋)。
- 解密:计算 c 2 − s ⋅ c 1 c_2 - s \cdot c_1 c2−s⋅c1,然后判断结果是否接近 ⌊ q / 2 ⌋ \lfloor q/2 \rfloor ⌊q/2⌋ 来恢复 m m m。
这种构造的安全性部分依赖于在分圆多项式环上的特定计算问题的难度。
学习建议
要全面理解和掌握分圆多项式理论,建议按以下顺序学习相关知识:
-
复数理论:熟悉复数的代数和几何表示,特别是欧拉公式 e i θ = cos θ + i sin θ e^{i\theta} = \cos\theta + i\sin\theta eiθ=cosθ+isinθ。掌握复数的乘法、幂运算及其在复平面上的几何意义。
-
初等数论:理解整除性、最大公约数、欧拉函数和莫比乌斯函数等概念。特别关注整数的基本性质,如唯一分解定理和同余理论。
-
多项式理论:掌握多项式的基本性质、因式分解和最小多项式等知识。理解不可约多项式的概念和判定方法。
-
群论基础:了解群、环和域的概念,特别是有限群和循环群。理解群同态和同构的概念,以及群在代数结构中的作用。
-
代数数论入门:学习代数数域、代数整数和Galois理论等高级概念。这些理论为深入理解分圆多项式的代数性质提供了基础。
参考文献
- Lang, S. (1994). Algebraic Number Theory. Springer-Verlag.
- Washington, L. C. (1997). Introduction to Cyclotomic Fields. Springer-Verlag.
- Ireland, K., & Rosen, M. (1990). A Classical Introduction to Modern Number Theory. Springer-Verlag.
- Cox, D. A. (2012). Galois Theory. John Wiley & Sons.
- Conrad, K. The cyclotomic polynomial. Retrieved from https://kconrad.math.uconn.edu/blurbs/
结论
分圆多项式是连接初等数论、代数学和复分析的重要桥梁,它以优雅的形式捕捉了单位根的代数性质。通过本文的详细介绍,相信读者已能够理解分圆多项式的定义、性质和计算方法,并认识到它在各个数学分支和应用领域中的重要地位。
分圆多项式为我们提供了一个绝佳的例子,展示了纯数学概念如何在现代应用中发挥关键作用。其从古典几何问题(正多边形的尺规作图)发展到现代密码学的核心工具,反映了数学理论的永恒魅力和实用价值。
掌握分圆多项式理论不仅有助于理解更深入的数学概念,也为解决实际问题提供了强大工具。随着数学和计算机科学的发展,分圆多项式在密码学、编码理论和数字信号处理等领域的应用将会越来越广泛。
附录:
文章原LaTex代码(文末有PDF不用编译可直接下载):
\documentclass[12pt,a4paper]{article}
\usepackage{ctex} % 支持中文
\usepackage{amsmath,amssymb,amsfonts} % 数学符号
\usepackage{graphicx} % 图片
\usepackage{hyperref} % 超链接
\usepackage{algorithmic} % 算法
\usepackage{algorithm} % 算法
\usepackage{listings} % 代码
\usepackage{xcolor} % 颜色
\usepackage{booktabs} % 表格
\usepackage{geometry} % 页面布局
\usepackage{tikz} % 绘图
\usetikzlibrary{arrows,shapes,positioning}
% 设置页面布局
\geometry{left=2.5cm,right=2.5cm,top=2.5cm,bottom=2.5cm}
% 设置代码样式
\lstset{
basicstyle=\ttfamily\small,
keywordstyle=\color{blue},
commentstyle=\color{green!60!black},
stringstyle=\color{red},
numbers=left,
numberstyle=\tiny\color{gray},
frame=single,
breaklines=true,
showstringspaces=false
}
% 引用和交叉引用设置
\hypersetup{
colorlinks=true,
linkcolor=blue,
filecolor=magenta,
urlcolor=cyan,
citecolor=green
}
\title{分圆多项式详解}
\author{}
\date{}
\begin{document}
\maketitle
\tableofcontents
\newpage
\section{引言}
分圆多项式(Cyclotomic Polynomial)是数论、代数学和群论中一个重要而基础的概念。它与单位根、代数数域和有限域理论等领域有着密切的联系。
分圆多项式的研究可以追溯到18世纪,当时Gauss在研究正多边形尺规作图问题时首次系统地研究了它们。"分圆"一词来源于希腊语,意为"分割圆",反映了这类多项式与单位圆上的点的紧密联系。在代数数论的发展中,Kronecker、Weber和Hilbert等数学家进一步揭示了分圆多项式在数域理论中的核心地位。
在现代数学和计算机科学中,分圆多项式在密码学、编码理论、数字信号处理等领域有着广泛应用。从理论角度看,它们是连接代数、几何和数论的重要桥梁;从应用角度看,它们为解决实际问题提供了有力工具。
本文将系统地介绍分圆多项式的定义、性质、计算方法以及应用,并详细解析相关的数学符号和函数。
\section{基本定义}
\subsection{单位根与本原单位根}
单位根是复平面上单位圆周上的点,满足方程 $z^n = 1$ 的复数 $z$。对于每个正整数 $n$,存在 $n$ 个 $n$ 次单位根,表示为:
$$\omega_k = e^{2\pi i k/n} = \cos(2\pi k/n) + i\sin(2\pi k/n), \quad k = 0, 1, 2, \ldots, n-1$$
其中,$e^{2\pi i} = \cos(2\pi) + i\sin(2\pi) = 1$,即 $e^{2\pi i}$ 表示旋转 $2\pi$ 弧度(一周)。
从几何角度看,$n$ 次单位根在复平面上构成了正 $n$ 边形的顶点,它们均匀分布在单位圆上。例如,4次单位根:$1, i, -1, -i$ 分别对应复平面上的点 $(1,0), (0,1), (-1,0), (0,-1)$,形成了一个正方形。
\begin{figure}[htbp]
\centering
\begin{tikzpicture}[scale=2.5]
% 绘制坐标轴
\draw[->] (-1.2,0) -- (1.2,0) node[right] {Re};
\draw[->] (0,-1.2) -- (0,1.2) node[above] {Im};
% 绘制单位圆
\draw (0,0) circle (1);
% 绘制8个单位根
\foreach \i in {0,1,...,7} {
\fill ({cos(\i*360/8)}, {sin(\i*360/8)}) circle (0.05);
\node at ({1.2*cos(\i*360/8)}, {1.2*sin(\i*360/8)}) {$\omega_{\i}$};
}
\end{tikzpicture}
\caption{8次单位根在复平面上的分布}
\label{fig:unit_roots}
\end{figure}
\textbf{本原单位根}是指那些阶恰好为 $n$ 的单位根,即满足 $z^n = 1$ 但对于任何 $1 \leq m < n$,都有 $z^m \neq 1$ 的复数 $z$。$n$ 次本原单位根的个数等于欧拉函数 $\varphi(n)$ 的值。
例如,对于 $n=8$,8次单位根是 $\{e^{2\pi i \cdot k/8} | k = 0, 1, \ldots, 7\}$。其中:
\begin{itemize}
\item $k=0$ 得到 $\omega_0 = 1$,它是1次单位根
\item $k=2,6$ 得到 $\omega_2 = i, \omega_6 = -i$,它们是4次单位根
\item $k=4$ 得到 $\omega_4 = -1$,它是2次单位根
\item $k=1,3,5,7$ 得到 $\omega_1, \omega_3, \omega_5, \omega_7$,它们是8次本原单位根
\end{itemize}
\subsection{分圆多项式的定义}
第 $n$ 个分圆多项式 $\Phi_n(x)$ 定义为所有 $n$ 次本原单位根的最小多项式,即:
$$\Phi_n(x) = \prod_{\substack{1 \leq k \leq n \\ \gcd(k,n)=1}} (x - e^{2\pi i k/n})$$
其中,$\gcd(k,n)$ 表示 $k$ 和 $n$ 的最大公约数,条件 $\gcd(k,n)=1$ 确保我们只选取本原单位根。
为了更好地理解这个定义,我们来看几个具体例子:
\textbf{例1:} 对于 $n=1$,唯一的1次单位根是 $\omega_0 = 1$,它也是1次本原单位根。因此:
$$\Phi_1(x) = x - 1$$
\textbf{例2:} 对于 $n=4$,4次单位根为 $1, i, -1, -i$。其中,$1$ 是1次单位根,$-1$ 是2次单位根,而 $i$ 和 $-i$ 是4次本原单位根(因为它们的阶恰好为4)。因此:
$$\Phi_4(x) = (x-i)(x-(-i)) = x^2 - (i+(-i))x + i \cdot (-i) = x^2 + 1$$
这种构造方式确保了 $\Phi_n(x)$ 是首一不可约多项式(系数为整数且首项系数为1),且它的根恰好是所有 $n$ 次本原单位根。
\textbf{补充解释:} 从代数的角度看,$\Phi_n(x)$ 是将 $n$ 次本原单位根 $\zeta$ 添加到有理数域 $\mathbb{Q}$ 后得到的扩域 $\mathbb{Q}(\zeta)$ 上 $\zeta$ 的最小多项式。这也是分圆多项式在代数数论中重要性的根源。
\section{分圆多项式的性质}
分圆多项式具有许多重要而优美的性质:
\subsection{整系数性质}
尽管分圆多项式是通过复数单位根定义的,但 $\Phi_n(x)$ 的系数全部是整数。这一性质并不直观,但可以通过代数理论证明。
\textbf{证明思路:} 该性质可通过归纳法证明。关键在于利用 $\Phi_n(x)$ 的递推定义和Galois理论。特别地,对于任意 $n$ 次本原单位根 $\zeta$,其所有共轭元素也是 $n$ 次本原单位根。因此,$\Phi_n(x)$ 可以看作是Galois群作用下的轨道多项式,而这样的多项式具有整系数。
更直观地,$\Phi_n(x)$ 可以表示为:
$$\Phi_n(x) = \sum_{k=0}^{\varphi(n)} a_k x^k$$
其中系数 $a_k$ 可以通过递推关系和莫比乌斯函数计算得到。虽然系数计算相对复杂,但它们确实都是整数。
\subsection{次数}
$\Phi_n(x)$ 的次数等于 $\varphi(n)$,即欧拉函数值,表示小于等于 $n$ 且与 $n$ 互质的正整数个数。
这一性质直接来源于分圆多项式的定义。由于 $\Phi_n(x)$ 是所有 $n$ 次本原单位根的最小多项式,而本原单位根的个数恰好是 $\varphi(n)$,因此 $\Phi_n(x)$ 的次数为 $\varphi(n)$。
例如:
\begin{itemize}
\item $\varphi(1) = 1$,对应 $\Phi_1(x) = x - 1$ 的次数为1
\item $\varphi(4) = 2$,对应 $\Phi_4(x) = x^2 + 1$ 的次数为2
\item $\varphi(5) = 4$,对应 $\Phi_5(x) = x^4 + x^3 + x^2 + x + 1$ 的次数为4
\end{itemize}
\subsection{递推关系}
分圆多项式之间存在重要的递推关系:
$$x^n - 1 = \prod_{d|n} \Phi_d(x)$$
其中 $d$ 遍历 $n$ 的所有正因子。通过这一关系,可以递推计算分圆多项式:
$$\Phi_n(x) = \frac{x^n - 1}{\prod_{d|n, d<n} \Phi_d(x)}$$
这一递推关系是计算分圆多项式最常用的方法,我们将在后续计算方法部分详细介绍其应用。
\textbf{递推关系证明思路:}
注意到 $x^n - 1 = \prod_{k=0}^{n-1} (x - e^{2\pi i k/n})$,即 $x^n - 1$ 的根是所有 $n$ 次单位根。而每个 $n$ 次单位根 $\omega$ 都是某个 $d|n$ 的 $d$ 次本原单位根。因此,$x^n - 1$ 的因式分解应该包括所有 $d|n$ 的 $\Phi_d(x)$。
\subsection{对称性}
$\Phi_n(x)$ 是自倒多项式,即:
$$\Phi_n(x) = x^{\varphi(n)}\Phi_n(1/x)$$
这意味着如果 $\alpha$ 是 $\Phi_n(x)$ 的根,那么 $1/\alpha$ 也是它的根。
这种对称性来源于本原单位根的一个重要性质:如果 $\zeta$ 是 $n$ 次本原单位根,那么 $\zeta^{-1} = \overline{\zeta}$($\zeta$ 的复共轭)也是 $n$ 次本原单位根。
\textbf{例:} 考虑 $\Phi_3(x) = x^2 + x + 1$,我们可以验证其对称性:
\begin{align*}
x^{\varphi(3)}\Phi_3(1/x) &= x^2 \cdot \left((1/x)^2 + (1/x) + 1\right)\\
&= x^2 \cdot \left(\frac{1}{x^2} + \frac{1}{x} + 1\right)\\
&= 1 + x + x^2\\
&= x^2 + x + 1 = \Phi_3(x)
\end{align*}
这种对称性对分圆多项式的系数有重要影响。例如,如果 $\Phi_n(x)$ 的次数为 $m = \varphi(n)$,则其系数满足 $a_i = a_{m-i}$(对于 $n > 1$ 且 $n$ 不是2的幂时)。
\subsection{首几项分圆多项式}
为了直观理解,列出前几个分圆多项式:
\begin{itemize}
\item $\Phi_1(x) = x - 1$
\item $\Phi_2(x) = x + 1$
\item $\Phi_3(x) = x^2 + x + 1$
\item $\Phi_4(x) = x^2 + 1$
\item $\Phi_5(x) = x^4 + x^3 + x^2 + x + 1$
\item $\Phi_6(x) = x^2 - x + 1$
\item $\Phi_7(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$
\item $\Phi_8(x) = x^4 + 1$
\item $\Phi_9(x) = x^6 + x^3 + 1$
\item $\Phi_{10}(x) = x^4 - x^3 + x^2 - x + 1$
\item $\Phi_{11}(x) = x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$
\item $\Phi_{12}(x) = x^4 - x^2 + 1$
\end{itemize}
观察这些多项式,我们可以发现一些有趣的模式:
1. 当 $n$ 是质数 $p$ 时,$\Phi_p(x) = x^{p-1} + x^{p-2} + \cdots + x + 1$
2. 当 $n = 2p$ 且 $p$ 是奇质数时,$\Phi_{2p}(x) = \Phi_p(-x)$
3. 当 $n = p^k$ 且 $p$ 是质数时,$\Phi_{p^k}(x) = \Phi_p(x^{p^{k-1}})$
这些观察可以通过分圆多项式的基本性质证明,也为计算更高阶的分圆多项式提供了捷径。
\subsection{莫比乌斯反演表达式}
利用莫比乌斯反演原理,分圆多项式可以表示为:
$$\Phi_n(x) = \prod_{d|n} (x^{n/d} - 1)^{\mu(d)}$$
其中 $\mu(d)$ 是莫比乌斯函数。
这一表达式为直接计算分圆多项式提供了一种方法,特别是当我们已经知道莫比乌斯函数值时。莫比乌斯反演公式在数论中有广泛应用,这里它为分圆多项式提供了一个优雅的代数表达。
\section{计算分圆多项式的方法}
\subsection{方法一:直接定义法}
根据定义,可以通过以下步骤计算 $\Phi_n(x)$:
\begin{enumerate}
\item 确定满足 $\gcd(k,n)=1$ 的所有 $k$ 值($1 \leq k \leq n$)
\item 计算对应的本原单位根 $\omega_k = e^{2\pi i k/n}$
\item 构造多项式 $\Phi_n(x) = \prod (x - \omega_k)$
\item 展开并化简
\end{enumerate}
然而,这种方法在 $n$ 较大时计算复杂度高,且需要处理复数运算,容易引入数值误差。因此,实际应用中通常采用其他方法。
\subsection{方法二:递推法}
利用递推关系可以更有效地计算分圆多项式:
\begin{enumerate}
\item 从已知的 $\Phi_1(x) = x - 1$ 开始
\item 利用公式 $\Phi_n(x) = \frac{x^n - 1}{\prod_{d|n, d<n} \Phi_d(x)}$ 递推计算
\end{enumerate}
\textbf{算法实现}:
\begin{lstlisting}[language=Python]
function 计算分圆多项式(n)
若 n = 1,返回 x - 1
设 P(x) = x^n - 1
对于 n 的每个真因子 d(即 d|n 且 d<n)
P(x) = P(x) / 计算分圆多项式(d)
返回 P(x)
\end{lstlisting}
\textbf{复杂度分析:} 该递推算法的时间复杂度取决于 $n$ 的因子数量和多项式除法的复杂度。若 $n$ 有 $d(n)$ 个因子($d(n)$ 是除数函数),则该算法的时间复杂度约为 $O(d(n) \cdot n^2)$。这比直接使用定义计算更高效,特别是对于较大的 $n$ 值。
以下是一个完整的Python实现,使用SymPy库处理符号计算:
\begin{lstlisting}[language=Python]
from sympy import symbols, Poly, div, factor
from math import gcd
def cyclotomic_polynomial_recursive(n):
"""使用递推方法计算第n个分圆多项式"""
x = symbols('x')
if n == 1:
return Poly(x - 1, x)
# 计算x^n - 1
result = Poly(x**n - 1, x)
# 对每个n的真因子d,除以Φ_d(x)
for d in range(1, n):
if n % d == 0: # d是n的因子
divisor = cyclotomic_polynomial_recursive(d)
q, r = div(result, divisor)
result = q
return result
# 测试前几个分圆多项式
for i in range(1, 13):
print(f"Φ_{i}(x) = {cyclotomic_polynomial_recursive(i)}")
\end{lstlisting}
\subsection{方法三:莫比乌斯反演法}
利用莫比乌斯反演公式:
$$\Phi_n(x) = \prod_{d|n} (x^{n/d} - 1)^{\mu(d)}$$
可以直接计算分圆多项式。
这种方法的优势在于它可以并行计算,不需要按顺序递推。但它需要预先计算莫比乌斯函数值,对于大的 $n$ 可能会有计算挑战。
\begin{lstlisting}[language=Python]
from sympy import symbols, prod, Poly
from sympy.ntheory import mobius
def cyclotomic_polynomial_mobius(n):
"""使用莫比乌斯反演计算第n个分圆多项式"""
x = symbols('x')
# 找出n的所有因子
factors = []
for d in range(1, n + 1):
if n % d == 0:
factors.append(d)
# 应用莫比乌斯反演公式
result = 1
for d in factors:
mu_d = mobius(d)
if mu_d != 0: # 跳过μ(d)=0的情况
term = (x**(n//d) - 1)**(mu_d)
result *= term
return Poly(result, x)
# 测试
for i in range(1, 7):
print(f"Φ_{i}(x) = {cyclotomic_polynomial_mobius(i)}")
\end{lstlisting}
\textbf{实例计算}:$\Phi_6(x)$
\begin{enumerate}
\item 6的因子有:1, 2, 3, 6
\item 计算莫比乌斯函数值:$\mu(1)=1$, $\mu(2)=-1$, $\mu(3)=-1$, $\mu(6)=1$
\item 代入公式:
\begin{align*}
\Phi_6(x) &= (x^{6/1} - 1)^{\mu(1)} \cdot (x^{6/2} - 1)^{\mu(2)} \cdot (x^{6/3} - 1)^{\mu(3)} \cdot (x^{6/6} - 1)^{\mu(6)}\\
&= (x^6 - 1)^1 \cdot (x^3 - 1)^{-1} \cdot (x^2 - 1)^{-1} \cdot (x - 1)^1\\
&= \frac{(x^6 - 1)(x - 1)}{(x^3 - 1)(x^2 - 1)}
\end{align*}
\item 计算:
\begin{align*}
\frac{(x^6 - 1)(x - 1)}{(x^3 - 1)(x^2 - 1)} &= \frac{(x^3 - 1)(x^3 + 1)(x-1)}{(x^3 - 1)(x-1)(x+1)}\\
&= \frac{x^3 + 1}{x + 1}\\
&= \frac{x^3 + 1}{x + 1}\\
&= x^2 - x + 1
\end{align*}
\end{enumerate}
\subsection{特殊情况下的公式}
对于某些特殊形式的 $n$,存在计算 $\Phi_n(x)$ 的简化公式:
1. 当 $n = p$ 是质数时:
$$\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \cdots + x + 1$$
2. 当 $n = p^m$ 是质数的幂时:
$$\Phi_{p^m}(x) = \Phi_p(x^{p^{m-1}})$$
3. 当 $n = 2p$ 且 $p$ 是奇质数时:
$$\Phi_{2p}(x) = \Phi_p(-x)$$
这些公式可以大大简化特定情况下的计算。例如,利用公式1,我们立即知道:
$$\Phi_5(x) = x^4 + x^3 + x^2 + x + 1$$
然后利用公式3,可以得到:
$$\Phi_{10}(x) = \Phi_5(-x) = (-x)^4 + (-x)^3 + (-x)^2 + (-x) + 1 = x^4 - x^3 + x^2 - x + 1$$
\section{分圆多项式的应用}
\subsection{代数数论}
分圆多项式是研究分圆域和代数整数环的基础工具。分圆域 $\mathbb{Q}(\zeta_n)$(其中 $\zeta_n$ 是原根)的代数结构可以通过 $\Phi_n(x)$ 来研究。
分圆域的关键性质包括:
1. 分圆域 $\mathbb{Q}(\zeta_n)$ 是 $\mathbb{Q}$ 上的伽罗瓦扩张,且其伽罗瓦群同构于 $(\mathbb{Z}/n\mathbb{Z})^*$,即模 $n$ 的简化剩余类乘法群。
2. 分圆域的整环由 $\mathbb{Z}[\zeta_n]$ 给出,这是研究代数整数的重要对象。
3. 分圆域在Kronecker-Weber定理中起核心作用,该定理指出任何阿贝尔扩张都包含在某个分圆域中。
这些深刻联系使分圆多项式成为代数数论研究的核心工具。
\subsection{有限域理论}
在有限域的构造和分析中,分圆多项式起着核心作用。例如,对于质数幂 $q$,寻找 $\mathbb{F}_q$ 上的本原多项式与分圆多项式密切相关。
特别地,$\Phi_n(x)$ 在 $\mathbb{F}_p$ 上的分解提供了对 $p$ 模 $n$ 的乘法阶的重要信息,这对构造特定性质的有限域至关重要。
例如,要构造 $\mathbb{F}_{2^4}$,我们可以使用 $\Phi_{15}(x) \bmod 2 = x^4 + x + 1$ 作为定义多项式,因为它在 $\mathbb{F}_2$ 上是不可约的。
\subsection{编码理论}
循环码和BCH码的设计与分析依赖于分圆多项式的性质。这些码在数字通信和存储系统中有广泛应用。
具体应用包括:
1. BCH码的生成多项式是某些分圆多项式的乘积,其纠错能力与所选分圆多项式直接相关。
2. Reed-Solomon码利用分圆多项式的性质设计高效纠错编码,广泛应用于CD、DVD、QR码和深空通信等。
3. 循环冗余校验(CRC)的设计也利用了分圆多项式的性质,用于检测数据传输中的错误。
\subsection{密码学}
分圆多项式在密码学中的应用主要体现在以下几个方面:
\textbf{1. 理想格密码学:} 基于理想格的密码方案,如NTRU加密系统,利用分圆多项式定义的环 $\mathbb{Z}[x]/(\Phi_n(x))$ 作为密码学操作的基础结构。这类系统被认为是抵抗量子计算攻击的潜在候选者。
\textbf{2. 同态加密:} 某些全同态加密方案,如BGV方案,使用分圆多项式环作为明文和密文空间,利用其代数结构支持加密状态下的计算。
\textbf{3. 安全性分析:} 分圆多项式的不可约性和其他代数性质直接影响了许多基于环的密码系统的安全性参数选择。
这些应用使得分圆多项式在现代密码学研究中具有重要地位,特别是在后量子密码学领域。
\subsection{离散傅里叶变换}
在FFT算法中,$n$ 次单位根 $\omega_n = e^{2\pi i/n}$ 及其幂起着核心作用。通过选择适当的 $n$(通常是2的幂),可以将 $O(n^2)$ 复杂度的离散傅里叶变换降低到 $O(n\log n)$。
分圆多项式与FFT的关系体现在:
\textbf{1. 单位根的代数性质:} FFT算法利用单位根满足 $\omega_n^n = 1$ 和 $\omega_n^{n/2} = -1$(当 $n$ 是2的幂时)等性质,这些性质直接与分圆多项式的结构相关。
\textbf{2. 多项式评估与插值:} FFT算法本质上是在单位根处评估多项式,然后通过插值重构多项式。这一过程与分圆多项式的构造过程有深刻联系。
\textbf{3. 循环卷积:} 通过FFT可高效计算多项式乘法,即两序列的循环卷积,这在 $\mathbb{Z}[x]/(\Phi_n(x))$ 环中有直接的代数解释。
\section{相关数学符号与函数}
\subsection{重要符号}
\begin{table}[htbp]
\centering
\begin{tabular}{|c|c|c|}
\hline
符号 & 名称 & 含义 \\
\hline
$\Phi_n(x)$ & 分圆多项式 & 第 $n$ 个分圭多项式 \\
$\varphi(n)$ & 欧拉函数 & 小于等于 $n$ 且与 $n$ 互质的正整数个数 \\
$\mu(n)$ & 莫比乌斯函数 & 用于莫比乌斯反演的重要数论函数 \\
$\gcd(a,b)$ & 最大公约数 & $a$ 和 $b$ 的最大公约数 \\
$\prod$ & 连乘符号 & 表示一系列元素的乘积 \\
$\sum$ & 求和符号 & 表示一系列元素的和 \\
$\mid$ & 整除符号 & $a\mid b$ 表示 $a$ 整除 $b$ \\
$e^{i\theta}$ & 欧拉公式 & $e^{i\theta} = \cos\theta + i\sin\theta$ \\
$\zeta_n$ & 原根 & $n$ 次本原单位根,通常指 $e^{2\pi i/n}$ \\
$\mathbb{Q}(\zeta_n)$ & 分圆域 & 由有理数和 $n$ 次原根生成的数域 \\
\hline
\end{tabular}
\caption{分圆多项式中的重要符号}
\end{table}
\subsection{欧拉函数 $\varphi(n)$}
欧拉函数 $\varphi(n)$ 计算小于等于 $n$ 且与 $n$ 互质的正整数个数:
\begin{itemize}
\item 对于质数 $p$:$\varphi(p) = p - 1$
\item 对于质数幂 $p^k$:$\varphi(p^k) = p^k - p^{k-1} = p^k(1 - \frac{1}{p})$
\item 一般情况:若 $n = p_1^{a_1} \cdot p_2^{a_2} \cdots p_k^{a_k}$,则 $\varphi(n) = n \prod_{i=1}^k (1 - \frac{1}{p_i})$
\end{itemize}
\textbf{计算例子:}
\begin{enumerate}
\item $\varphi(12) = 12 \cdot (1-\frac{1}{2}) \cdot (1-\frac{1}{3}) = 12 \cdot \frac{1}{2} \cdot \frac{2}{3} = 4$
\item $\varphi(36) = 36 \cdot (1-\frac{1}{2}) \cdot (1-\frac{1}{3}) = 36 \cdot \frac{1}{2} \cdot \frac{2}{3} = 12$
\item $\varphi(17) = 17 - 1 = 16$(因为17是质数)
\item $\varphi(25) = 25 \cdot (1-\frac{1}{5}) = 25 \cdot \frac{4}{5} = 20$(因为$25 = 5^2$)
\end{enumerate}
\textbf{重要性质:}
\begin{itemize}
\item 如果 $m$ 和 $n$ 互质,则 $\varphi(mn) = \varphi(m) \cdot \varphi(n)$(欧拉函数是积性函数)
\item 对于任意正整数 $n$,有 $\sum_{d|n} \varphi(d) = n$
\item 若 $p$ 是奇质数,则 $\varphi(2p) = \varphi(p)$
\end{itemize}
在分圆多项式理论中,欧拉函数 $\varphi(n)$ 有两个核心应用:
\begin{enumerate}
\item 确定 $\Phi_n(x)$ 的次数为 $\varphi(n)$
\item 计算 $n$ 次本原单位根的个数为 $\varphi(n)$
\end{enumerate}
\subsection{莫比乌斯函数 $\mu(n)$}
莫比乌斯函数 $\mu(n)$ 定义为:
\begin{itemize}
\item $\mu(1) = 1$
\item 若 $n$ 含有平方因子,则 $\mu(n) = 0$
\item 若 $n$ 是 $k$ 个不同质数的乘积,则 $\mu(n) = (-1)^k$
\end{itemize}
莫比乌斯函数是数论中的重要函数,用于莫比乌斯反演公式。该公式指出,如果两个数论函数 $f$ 和 $g$ 满足关系 $f(n) = \sum_{d|n} g(d)$,则 $g(n) = \sum_{d|n} \mu(n/d)f(d)$。
在分圆多项式的研究中,莫比乌斯函数用于表达式:
$$\Phi_n(x) = \prod_{d|n} (x^{n/d} - 1)^{\mu(d)}$$
下面是一些莫比乌斯函数值的例子:
\begin{itemize}
\item $\mu(1) = 1$
\item $\mu(2) = -1$(包含1个质因数)
\item $\mu(3) = -1$(包含1个质因数)
\item $\mu(4) = 0$(含有平方因子$2^2$)
\item $\mu(5) = -1$(包含1个质因数)
\item $\mu(6) = 1$(包含2个不同质因数)
\item $\mu(12) = 0$(含有平方因子,因为$12 = 2^2 \cdot 3$)
\end{itemize}
\subsection{最大公约数 $\gcd(a,b)$}
最大公约数可以通过欧几里得算法(辗转相除法)计算:
\begin{lstlisting}[language=Python]
function gcd(a, b)
若 b = 0,返回a
否则返回 gcd(b, a mod b)
\end{lstlisting}
这一算法基于性质:$\gcd(a, b) = \gcd(b, a \bmod b)$。
在分圆多项式定义中,$\gcd$ 用于确定哪些 $k$ 值对应 $n$ 次本原单位根,即满足条件 $\gcd(k, n) = 1$ 的 $k$ 值($1 \leq k \leq n$)。
例如,对于 $n = 8$:
\begin{itemize}
\item $\gcd(1, 8) = 1$
\item $\gcd(2, 8) = 2 \neq 1$
\item $\gcd(3, 8) = 1$
\item $\gcd(4, 8) = 4 \neq 1$
\item $\gcd(5, 8) = 1$
\item $\gcd(6, 8) = 2 \neq 1$
\item $\gcd(7, 8) = 1$
\item $\gcd(8, 8) = 8 \neq 1$
\end{itemize}
因此,8次本原单位根对应 $k = 1, 3, 5, 7$,总共有4个,与 $\varphi(8) = 4$ 一致。
\section{实例详解}
\subsection{示例1:计算 $\Phi_3(x)$ 的直接方法}
\begin{enumerate}
\item 确定3次本原单位根:$\gcd(1,3)=1$, $\gcd(2,3)=1$,所以 $k=1,2$ 对应的单位根是本原单位根。
\item 计算这些单位根:
\begin{align*}
\omega_1 &= e^{2\pi i \cdot 1/3} = \cos(2\pi/3) + i\sin(2\pi/3) = -\frac{1}{2} + i\frac{\sqrt{3}}{2}\\
\omega_2 &= e^{2\pi i \cdot 2/3} = \cos(4\pi/3) + i\sin(4\pi/3) = -\frac{1}{2} - i\frac{\sqrt{3}}{2}
\end{align*}
\item 构造多项式:
\begin{align*}
\Phi_3(x) &= (x - \omega_1)(x - \omega_2)\\
&= x^2 - x(\omega_1 + \omega_2) + \omega_1\omega_2\\
\end{align*}
\item 计算 $\omega_1 + \omega_2$ 和 $\omega_1\omega_2$:
\begin{align*}
\omega_1 + \omega_2 &= (-\frac{1}{2} + i\frac{\sqrt{3}}{2}) + (-\frac{1}{2} - i\frac{\sqrt{3}}{2}) = -1\\
\omega_1\omega_2 &= e^{2\pi i \cdot 1/3} \cdot e^{2\pi i \cdot 2/3} = e^{2\pi i \cdot 3/3} = e^{2\pi i} = 1
\end{align*}
\item 得到最终结果:
\begin{align*}
\Phi_3(x) &= x^2 - x \cdot (-1) + 1\\
&= x^2 + x + 1
\end{align*}
\end{enumerate}
这个例子展示了如何直接从定义计算分圆多项式。虽然对于小的 $n$ 值这种方法可行,但随着 $n$ 增大,计算会变得非常复杂。
\subsection{示例2:利用递推关系计算 $\Phi_6(x)$}
\begin{enumerate}
\item 利用公式 $x^6 - 1 = \prod_{d|6} \Phi_d(x) = \Phi_1(x) \cdot \Phi_2(x) \cdot \Phi_3(x) \cdot \Phi_6(x)$
\item 已知 $\Phi_1(x) = x - 1$, $\Phi_2(x) = x + 1$, $\Phi_3(x) = x^2 + x + 1$
\item 推导:
\begin{align*}
\Phi_6(x) &= \frac{x^6 - 1}{(x-1)(x+1)(x^2+x+1)}
\end{align*}
\item 分步计算:
\begin{align*}
x^6 - 1 &= (x^3)^2 - 1 = (x^3 - 1)(x^3 + 1)\\
x^3 - 1 &= (x - 1)(x^2 + x + 1)
\end{align*}
\item 代入:
\begin{align*}
\Phi_6(x) &= \frac{(x^3 - 1)(x^3 + 1)}{(x-1)(x+1)(x^2+x+1)}\\
&= \frac{(x-1)(x^2+x+1)(x^3+1)}{(x-1)(x+1)(x^2+x+1)}\\
&= \frac{x^3+1}{x+1}
\end{align*}
\item 进行多项式长除法:
\begin{align*}
\frac{x^3+1}{x+1} &= \frac{x^3+x-x+1}{x+1}\\
&= \frac{x(x^2+1) + (1-x)}{x+1}\\
&= \frac{x(x^2+1) - (x-1)}{x+1}\\
&= x^2 - x + 1
\end{align*}
\end{enumerate}
这个例子展示了递推法的实际应用,它充分利用了已知的低阶分圆多项式结果。
\subsection{示例3:利用莫比乌斯反演计算 $\Phi_4(x)$}
通过公式 $\Phi_n(x) = \prod_{d|n} (x^{n/d} - 1)^{\mu(d)}$:
\begin{enumerate}
\item 确定4的所有因子:1, 2, 4
\item 计算莫比乌斯函数值:$\mu(1)=1$, $\mu(2)=-1$, $\mu(4)=0$
\item 代入公式:
\begin{align*}
\Phi_4(x) &= (x^{4/1} - 1)^{\mu(1)} \cdot (x^{4/2} - 1)^{\mu(2)} \cdot (x^{4/4} - 1)^{\mu(4)}\\
&= (x^4 - 1)^1 \cdot (x^2 - 1)^{-1} \cdot (x - 1)^0\\
&= \frac{x^4 - 1}{x^2 - 1}
\end{align*}
\item 分解计算:
\begin{align*}
\frac{x^4 - 1}{x^2 - 1} &= \frac{(x^2)^2 - 1}{x^2 - 1}\\
&= \frac{(x^2-1)(x^2+1)}{x^2-1}\\
&= x^2 + 1
\end{align*}
\end{enumerate}
这个例子展示了莫比乌斯反演公式的应用。该方法的优势在于可以直接计算任意 $n$ 的分圆多项式,而不需要先计算低阶多项式。
\section{扩展练习与应用实例}
为了加深对分圆多项式的理解,下面提供一些扩展练习和应用实例:
\subsection{扩展练习}
\begin{enumerate}
\item 计算 $\Phi_{10}(x)$,并验证其整系数性质和对称性。
\item 证明对于任意素数 $p$,$\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \cdots + x + 1$。
\item 证明对于素数 $p$ 和正整数 $n$,如果 $p$ 不整除 $n$,则 $\Phi_{pn}(x) = \Phi_n(x^p)/\Phi_n(x)$。
\item 验证当 $n = p^k$($p$ 为素数,$k \geq 1$)时,$\Phi_{p^k}(x) = \Phi_p(x^{p^{k-1}})$。
\item 计算前15个分圆多项式,并观察其系数模式。
\end{enumerate}
\subsection{应用实例:有限域构造}
我们可以利用分圆多项式构造有限域 $\mathbb{F}_{p^n}$。具体步骤如下:
\begin{enumerate}
\item 选择一个素数 $p$ 和正整数 $n$。
\item 找到一个 $n$ 次不可约多项式 $f(x) \in \mathbb{F}_p[x]$。分圆多项式 $\Phi_m(x)$ 在满足特定条件时可以用作此不可约多项式。
\item 构造商环 $\mathbb{F}_p[x]/(f(x))$,它是具有 $p^n$ 个元素的有限域。
\end{enumerate}
\textbf{例:} 构造 $\mathbb{F}_{2^4}$
\begin{enumerate}
\item 我们需要在 $\mathbb{F}_2[x]$ 中找到一个4次不可约多项式。
\item 可以验证 $\Phi_{15}(x) \bmod 2 = x^4 + x + 1$ 在 $\mathbb{F}_2$ 上是不可约的。
\item 因此 $\mathbb{F}_{2^4} \cong \mathbb{F}_2[x]/(x^4 + x + 1)$。
\end{enumerate}
这个有限域有16个元素,可以表示为 $\{0, 1, \alpha, \alpha^2, ..., \alpha^{14}\}$,其中 $\alpha$ 是 $x^4 + x + 1$ 的一个根。
\subsection{应用实例:密码系统中的分圆多项式}
以下是一个简化的基于分圆多项式的加密方案示例,类似于一些后量子密码系统的基本构造:
\begin{enumerate}
\item 选择一个合适的 $n$,通常是2的幂,例如 $n = 256$。
\item 使用环 $R = \mathbb{Z}[x]/(\Phi_n(x) + 1)$。
\item 在 $R$ 中选择一个"小"元素 $s$ 作为私钥。
\item 公钥生成:选择随机多项式 $a \in R$ 和一个小的误差多项式 $e$,计算 $b = a \cdot s + e$。
\item 公钥是 $(a, b)$,私钥是 $s$。
\item 加密消息 $m$(比特):选择小的随机多项式 $r, e_1, e_2$,计算密文 $(c_1, c_2) = (a \cdot r + e_1, b \cdot r + e_2 + m \cdot \lfloor q/2 \rfloor)$。
\item 解密:计算 $c_2 - s \cdot c_1$,然后判断结果是否接近 $\lfloor q/2 \rfloor$ 来恢复 $m$。
\end{enumerate}
这种构造的安全性部分依赖于在分圆多项式环上的特定计算问题的难度。
\section{学习建议}
要全面理解和掌握分圆多项式理论,建议按以下顺序学习相关知识:
\begin{enumerate}
\item \textbf{复数理论}:熟悉复数的代数和几何表示,特别是欧拉公式 $e^{i\theta} = \cos\theta + i\sin\theta$。掌握复数的乘法、幂运算及其在复平面上的几何意义。
\item \textbf{初等数论}:理解整除性、最大公约数、欧拉函数和莫比乌斯函数等概念。特别关注整数的基本性质,如唯一分解定理和同余理论。
\item \textbf{多项式理论}:掌握多项式的基本性质、因式分解和最小多项式等知识。理解不可约多项式的概念和判定方法。
\item \textbf{群论基础}:了解群、环和域的概念,特别是有限群和循环群。理解群同态和同构的概念,以及群在代数结构中的作用。
\item \textbf{代数数论入门}:学习代数数域、代数整数和Galois理论等高级概念。这些理论为深入理解分圆多项式的代数性质提供了基础。
\end{enumerate}
\section{参考文献}
\begin{enumerate}
\item Lang, S. (1994). \textit{Algebraic Number Theory}. Springer-Verlag.
\item Washington, L. C. (1997). \textit{Introduction to Cyclotomic Fields}. Springer-Verlag.
\item Ireland, K., \& Rosen, M. (1990). \textit{A Classical Introduction to Modern Number Theory}. Springer-Verlag.
\item Cox, D. A. (2012). \textit{Galois Theory}. John Wiley \& Sons.
\item Conrad, K. \textit{The cyclotomic polynomial}. Retrieved from https://kconrad.math.uconn.edu/blurbs/
\end{enumerate}
\section{结论}
分圆多项式是连接初等数论、代数学和复分析的重要桥梁,它以优雅的形式捕捉了单位根的代数性质。通过本文的详细介绍,相信读者已能够理解分圆多项式的定义、性质和计算方法,并认识到它在各个数学分支和应用领域中的重要地位。
分圆多项式为我们提供了一个绝佳的例子,展示了纯数学概念如何在现代应用中发挥关键作用。其从古典几何问题(正多边形的尺规作图)发展到现代密码学的核心工具,反映了数学理论的永恒魅力和实用价值。
掌握分圆多项式理论不仅有助于理解更深入的数学概念,也为解决实际问题提供了强大工具。随着数学和计算机科学的发展,分圆多项式在密码学、编码理论和数字信号处理等领域的应用将会越来越广泛。
\end{document}