26、Piu 开发指南:构建用户界面的全面解析

Piu 开发指南:构建用户界面的全面解析

1. Piu 对象概述

在 Piu 开发中,当对添加到应用对象的内容对象属性进行更改时,屏幕会自动更新。Piu 通过使显示的相应部分失效来触发更新,内容对象则调用所需的绘图函数来更新屏幕。

1.1 非内容对象类型

除了内容对象,Piu 还有其他几种类型的对象,用于以不同方式修改内容对象,如外观、行为或动画效果。这些对象都不继承自 Content 类,下面介绍几种常见的对象类型:
- 外观定义对象 :包括 Skin、Texture 和 Style 类,用于修改内容对象的外观。
- Style 类 :定义文本的外观,包括字体和颜色。例如:

const textStyle = new Style({
    font: "24px Open Sans"
});
- **Skin 类**:控制内容对象背景的绘制。例如:
const labelBackground = new Skin({
    fill: "#1932ab"
});
- **Texture 类**:不直接被内容对象使用,而是通过 Skin 对象的 texture 属性与 Skin 对象关联。
  • 行为控制对象
内容概要:本文详细介绍了一个基于布谷鸟搜索算法(CS)与注意力机制长短期记忆网络(ALSTM)融合的风电功率预测项目实例,旨在通过智能优化与深度学习相结合的方法提升预测精度。项目涵盖了从数据预处理、特征工程、CS算法优化ALSTM超参数、注意力机制增强模型对关键时序特征的关注能力,到模型训练、预测及结果可视化的完整流程。文中还提供了MATLAB代码示例,包括数据填补、归一化、滑动窗口构建样本、CS算法实现、ALSTM建模与训练、预测反归一化、误差评估及注意力权重可视化等关键环节,展示了CS-ALSTM模型在应对风电数据高波动性、非线性、噪声干扰和长序列依赖等问题上的有效性。; 适合人群:具备一定机器学习与深度学习基础,熟悉MATLAB编程,从事新能源预测、智能电网、时间序列分析等相关领域的研究人员或工程师,尤其是工作1-3年希望提升模型优化与实战能力的技术人员; 使用场景及目标:①应用于风电场功率预测,提升预测精度以优化电网调度与能源消纳;②研究智能优化算法(如CS)与深度学习模型(如ALSTM)的融合机制;③开展太阳能、负荷等其他时序预测任务的模型开发与参数自动优化; 阅读建议:此资源以实际项目为导向,强调算法实现与工程应用结合,建议读者在理解模型架构基础上,动手复现代码并调试参数,重点关注CS算法的全局寻优过程与注意力机制的可视化分析,深入掌握模型优化逻辑与预测性能提升路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值