tensorflow
文章平均质量分 50
Tensorflow1.x版本的入门实践。
rosefunR
每次都多付出一点. 欢迎关注公众号《机器学习与算法之道》
展开
-
Tensorflow向量加tf.add
import tensorflow as tf# Press Shift+F10 to execute it or replace it with your code.# Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings.def element_add(a, b): return tf.add(a, b)def main(): vara =原创 2021-04-19 21:42:19 · 531 阅读 · 0 评论 -
tensorboard可视化使用
1、启动C:\Users\R>tensorboard --logdir=/path/to/log-directoryTensorBoard 0.1.8 at http://R:6006 (Press CTRL+C to quit)然后,在浏览器输入:http://localhost:6006/2.遇到的问题一开始,显示Tensorboard: No graph definition files w原创 2017-12-12 17:10:00 · 740 阅读 · 0 评论 -
基于anaconda在Windows安装TensorFlow
引言—CUDA与版本选择本人系统:Windows8.1;硬件:TensorFlow有支持CPU,GPU版本,支持GPU版本的TensorFlow对硬件(显卡)要求更高。如果显卡是nvdia(看电脑贴签)可以通过nvdia CUDA支持GPU型号,查看自己电脑时候支持CUDA,如果支持,就可以装GPU版本。(GPU版本功能更强)关于CUDA的理解博文 一、安装步骤原创 2017-11-14 13:05:52 · 1363 阅读 · 0 评论 -
tensorboard可视化高级使用
1、Scalar运行程序时,出错,AttributeError: 'SummaryMetadata' object has no attribute 'display_name' 只有graph图像。 后来,发现这是TensorFlow版本问题。由于,之前装的GPU版本是tensorflow (1.3.0rc0),但是运行tensorboard的时候,没有出现scalar,然后试了升级Tens原创 2017-12-14 21:48:31 · 3007 阅读 · 0 评论 -
Tensorflow1.x系列(6): TensorFlow计算加速实现
1、GPU实现# # 通过tf.device将运算指定到特定的设备上。with tf.device('/cpu:0'): a = tf.constant([1.0, 2.0, 3.0], shape=[3], name='a') b = tf.constant([1.0, 2.0, 3.0], shape=[3], name='b')with tf.device('/gpu:0'原创 2017-12-16 17:22:19 · 2609 阅读 · 0 评论 -
(待完善)TensorFlow对mnist的实现
1、mnist.py关于DataSet对象,对象里边有初始化,class DataSet(object): def __init__(self, images, labels, fake_data=False, one_hot=False, dtyp原创 2018-01-02 11:35:06 · 710 阅读 · 0 评论 -
TensorFlow 中 tf.app.flags.FLAGS 的用法介绍
1、用法tf.app.flags.FLAGS 用来传递参数。参考:tf.app.flags.FLAGS用法原创 2017-12-28 15:55:18 · 8755 阅读 · 1 评论 -
TensorFlow 的Tensor运算
1 Tensorflow 和numpy区别 相同点:都提供n位数组 不同点:numpy支持ndarray,而Tensorflow里有tensor;numpy不提供创建张量函数和求导,也不提供GPU支持。显示Tensor 需要加eval函数ta = tf.zeros((2,2))print(ta)#Tensor("zeros_1:0", shape=(2, 2), dtyp原创 2018-01-06 10:54:30 · 620 阅读 · 0 评论 -
神经网络模型不收敛的处理
1、learning rate设大了0.1~0.0001.不同模型不同任务最优的lr都不一样。我现在越来越不明白TensorFlow了,我设置训练次数很大的时候,它一开始就给我“收敛”到一个值,后面的值都一样。2、归一化参考:深度学习收敛问题;训练深度神经网络原创 2017-12-22 14:50:02 · 30836 阅读 · 24 评论 -
TensorFlow遇到的各种问题及解决方法
1、1.IndentationError: expected an indented block; 就是该缩进的缩进。 http://blog.csdn.net/neilhappy/article/details/77249592.TypeError: init() got an unexpected keyword argument ‘shape’; v = tf.get_variable(原创 2017-12-05 12:43:42 · 2654 阅读 · 1 评论 -
Tensorflow1.x系列(5): Tensorflow一些常用基本概念与函数
参考: 1、Tensorflow一些常用基本概念与函数原创 2017-12-10 22:47:34 · 375 阅读 · 0 评论 -
TensorFlow的MNIST数据识别
1、代码原创 2017-12-20 22:57:44 · 324 阅读 · 0 评论 -
Tensorflow1.x系列(7):TensorFlow持久化
引言持久化,就是能够把当前模型以及模型的参数能够保持下来,用于下次使用。1、持久化代码实现API原创 2017-12-18 21:05:04 · 254 阅读 · 0 评论 -
(坑)TensorFlow神经网络模型进行回归
引言使用TensorFlow训练好的神经网络模型,来进行对输入数据的输出预测,即软测量的过程。1、训练神经网络模型这里写代码片原创 2017-12-21 08:59:34 · 3511 阅读 · 0 评论 -
TensorFlow变量初始化
1、tf.Variable()2、tf.get_variable()3、tf.variable.scope()参考:tf.Variable_csdn原创 2017-12-22 10:47:07 · 537 阅读 · 0 评论 -
TensorFlow计算模型--计算图
编译环境>>> tf.__version__'1.4.0'Python 3.5.2可以说,TensorFlow日新月异,刚买的TensorFlow的书,只是0.9.0,自己装的是1.4.0,很多的语法都出错,真是让我头大啊。1、计算图的使用1.1运算代码计算图,就是包括张量(多维数组)和运算的计算模型。使用《TensorFlow实战Google框架》给的代码,报错。>>> import tenso原创 2017-12-05 12:46:36 · 469 阅读 · 0 评论 -
TensorFlow数据模型--张量
1、张量(tensor)>>> result=tf.add(a,b,name='addTwo')>>> print(result)Tensor("addTwo:0", shape=(2,), dtype=float32)注:shape(2,)是一个一维数组,长度为2。张量,有三个属性,分别为:名称addTwo,维度shape,类型type。2、tensor支持的类型tensor,支持14种不同类原创 2017-12-05 17:23:19 · 373 阅读 · 0 评论 -
Tensorflow1.x系列(4): 神经网络在TensorFlow实现
1.引言1.1神经网络的术语 1.偏置bias: 2.激活函数:sigmoid函数;tanh函数;Relu函数。 3.损失函数:最小平方误差准则(MSE)、交叉熵(cross-entropy)、对数似然函数(log-likelihood)、指数损失函数(exp-loss)、Hinge损失函数(Hinge-loss)、0-1损失函数、绝对值损失函数 4.反向传播优化算原创 2017-12-06 10:25:10 · 16622 阅读 · 2 评论 -
Tensorflow教程系列(3): 会话session
1、会话sessiontf原创 2017-12-05 17:28:57 · 1593 阅读 · 0 评论