rothschildlhl
码龄4年
  • 690,372
    被访问
  • 134
    原创
  • 4,421
    排名
  • 2,007
    粉丝
关注
提问 私信

个人简介:人生逆旅单行道,哪有岁月可回头;人生得一知己足矣,斯世当以同怀视之。

  • 加入CSDN时间: 2018-07-12
博客简介:

rothschild666的博客

博客描述:
心有所信,方能行远。
查看详细资料
  • 6
    领奖
    总分 1,868 当月 295
个人成就
  • 获得1,000次点赞
  • 内容获得322次评论
  • 获得3,113次收藏
创作历程
  • 43篇
    2022年
  • 20篇
    2021年
  • 22篇
    2020年
  • 47篇
    2019年
  • 2篇
    2018年
成就勋章
TA的专栏
  • C++
    付费
    1篇
  • LINUX
    2篇
  • 工具
    15篇
  • 算法
    9篇
  • 人工智能
    19篇
  • NLP
    4篇
  • word文档
    6篇
  • Rational Rose
    5篇
  • Android
    15篇
  • 其他
    6篇
  • Axure
    2篇
  • 网络设计
  • 数据挖掘
    3篇
  • EDA
    1篇
  • 汇编语言
  • java
    12篇
  • GitHub
    5篇
  • python
    56篇
  • excel
    2篇
  • 操作系统
    4篇
  • WEB
    2篇
兴趣领域 设置
  • 人工智能
    计算机视觉目标检测机器学习人工智能深度学习神经网络pytorch图像处理
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

基于Pytorch的图卷积网络GCN实例应用及详解3.0

基于Pytorch的图卷积网络GCN实例应用及详解3.0的实例应用依旧是图的二分类任务,数据训练预测模型框架没有变化,主要是**数据集本身及其处理和重新构造及损失函数选择发生变化**,其余部分发生细微变化。
原创
发布博客 2022.05.21 ·
273 阅读 ·
1 点赞 ·
0 评论

基于Pytorch的深度学习模型保存和加载方式

我们在训练深度学习模型的过程中,最好对已经训练好的深度学习模型进行保存,或者方便的加载别人训练好的模型微调节省训练时间,实现高效率解决问题。
原创
发布博客 2022.05.21 ·
217 阅读 ·
1 点赞 ·
0 评论

基于Pytorch之深度学习模型数据类型和维度转换个人总结

博主近期在学习深度学习模型时,发现这个数据类型转换和维度的重构既细节又容易出错,特总结此篇文章,用于自己回顾和分享给有需要的朋友,总结可能不是很全面,不足之处还望大家多多包涵!
原创
发布博客 2022.05.20 ·
170 阅读 ·
1 点赞 ·
0 评论

基于Python之邻接矩阵沿对角线拼接操作简单方法

图的邻接矩阵一般定义是:节点与节点之间的边构成一个矩阵,比如:一张图片有N个节点,那么邻接矩阵的维度就是[N,N]大小,矩阵的每个值表示对应两个节点之间是否有边相连接,连接则值设为1,否则设为0(下图就是一张节点N=20的邻接矩阵)。
原创
发布博客 2022.05.19 ·
171 阅读 ·
1 点赞 ·
0 评论

基于Python的一个开源命令行工具Python Fire

基于Python的一个开源命令行工具Python FirePython Fire 是谷歌开源的一个命令行工具。Python Fire 是一个用于从绝对任何 Python 对象自动生成命令行界面 (CLI) 的库。Python Fire 是一种在 Python 中创建 CLI 的简单方法。Python Fire 是用于开发和调试 Python 代码的有用工具。Python Fire 有助于探索现有代码或将其他人的代码转换为 CLI。Python Fire 使 Bash 和 Python 之间的转换
原创
发布博客 2022.05.18 ·
92 阅读 ·
1 点赞 ·
0 评论

关于图和实例的学习之相关概念个人理解

关于图和实例的学习之相关概念个人理解一、连通图(Connected Graph)连通图的定义:在图论中,连通图基于连通的概念,图又基本分为无向图和有向图,但都得满足图中任意两点都是连通的,那么图就被称作连通图,否则就是非连通图。无向图 :若从图中取任意顶点 u 到任意顶点 v 有路径相连(当然从 u 到 v 也一定有路径),则称 u 和 v 是连通的,此图也就是无向图中的连通图,否则就是非连通图。有向图:若从图中取任意顶点 u 到任意顶点 v 都连通,然后连接 u 和 v 的路径中所有的边也都必
原创
发布博客 2022.05.13 ·
76 阅读 ·
1 点赞 ·
0 评论

基于Pytorch的Transformer翻译模型前期数据处理方法

Google于2017年6月在arxiv上发布了一篇非常经典的文章:Attention is all you need,提出了解决sequence to sequence问题的transformer模型,该文章使用全Attention的结构代替了LSTM,抛弃了之前传统的encoder-decoder模型必须结合CNN或者RNN的固有模式。在减少计算量和提高并行效率的同时还取得了更好的结果,也被评为2017年 NLP 领域的年度最佳论文。
原创
发布博客 2022.05.11 ·
452 阅读 ·
1 点赞 ·
0 评论

英文及繁体中文对应数据集

发布资源 2022.05.11 ·
txt

Resource punkt not found. Please use the NLTK Downloader to obtain the resource错误解决方案

首先前提是已经安装了python的nltk库(见下图),目的是调用nltk库的word_tokenize方法实现英文分词。
原创
发布博客 2022.05.09 ·
398 阅读 ·
1 点赞 ·
0 评论

基于Windows安装langconv实现繁体和简体字的转换

在学习自然语言处理的时候,大家可能已经发现有些中文数据集是繁体字,那么当我们的任务需求是输出简体字时就需要对原始中文数据集进行字体转换,达到顺利输出的目的。
原创
发布博客 2022.05.09 ·
275 阅读 ·
1 点赞 ·
0 评论

Bert模型之unable to parse config.json as a URL or as a local path错误解决方案

在jupyter notebook中运行下面代码出现问题,报ValueError: unable to parse F:/modelfile/Bert/bert-base-uncased/config.json as a URL or as a local path错误,注意:下面代码中的文件路径根据自己下载解压的文件路径对应更改。
原创
发布博客 2022.05.04 ·
413 阅读 ·
1 点赞 ·
0 评论

基于Pytorch学习Bert模型配置运行环境详细流程

BERT是2018年10月由Google AI研究院提出的一种预训练模型。BERT的全称是Bidirectional Encoder Representation from Transformers。BERT在机器阅读理解顶级水平测试SQuAD1.1中表现出惊人的成绩: 全部两个衡量指标上全面超越人类,并且在11种不同NLP测试中创出SOTA表现,包括将GLUE基准推高至80.4% (绝对改进7.6%),MultiNLI准确度达到86.7% (绝对改进5.6%),成为NLP发展史上的里程碑式的模型成就。
原创
发布博客 2022.05.04 ·
1225 阅读 ·
1 点赞 ·
0 评论

Git指令学习个人记录

Git指令学习个人记录Git 是一个免费和开源的 分布式版本控制系统,旨在以速度和效率处理从小型到大型项目的所有内容。Git易于学习, 占用空间小,性能快如闪电。它优于 SCM 工具,如 Subversion、CVS、Perforce 和 ClearCase,具有廉价的本地分支、方便的暂存区域和 多个工作流等功能。注意:Git是一个版本控制工具,GitHub是一个用Git做版本控制的项目托管平台。一、Git官网及下载安装教程Git官网:点击打开Git官网Git安装教程:点击打开《Git - Wind
原创
发布博客 2022.05.01 ·
384 阅读 ·
1 点赞 ·
0 评论

基于Windows系统安装Notepad++详细过程

Notepad++ 是一个免费的(如“言论自由”和“免费啤酒”)源代码编辑器和记事本替代品,支持多种语言。在 MS Windows 环境中运行,其使用受GNU 通用公共许可证的约束。Notepad++基于强大的编辑组件Scintilla,用C++编写,使用纯Win32 API和STL,保证了更高的执行速度和更小的程序体积。通过在不失用户友好性的情况下尽可能多地优化例程,Notepad++ 正试图减少世界二氧化碳排放量。当使用较少的 CPU 功率时,PC 可以降低功耗并降低功耗,从而实现更环保的环境。
原创
发布博客 2022.04.27 ·
162 阅读 ·
1 点赞 ·
0 评论

基于Pytorch的卷积神经网络CNN实例应用及详解2.0

基于Pytorch的卷积神经网络CNN实例应用**依旧是DTI也就是药物靶体交互预测**,**数据训练预测模型框架没有变化**,**只有数据集的读取&处理和重新构造及损失函数选择发生变化**,其余部分发生细微变化。
原创
发布博客 2022.04.26 ·
196 阅读 ·
2 点赞 ·
0 评论

基于Pytorch的卷积神经网络CNN实例应用及详解

基于Pytorch的卷积神经网络CNN实例应用及详解一、卷积神经网络CNN定义卷积神经网络(CNN,有时被称为 ConvNet)是很吸引人的。在短时间内,它们变成了一种颠覆性的技术,打破了从文本、视频到语音等多个领域所有最先进的算法,远远超出了其最初在图像处理的应用范围。CNN 由许多神经网络层组成。卷积和池化这两种不同类型的层通常是交替的。网络中每个滤波器的深度从左到右增加。最后通常由一个或多个全连接的层组成。二、卷积神经网络的原理...
原创
发布博客 2022.04.16 ·
1409 阅读 ·
1 点赞 ·
0 评论

Pytorch中Trying to backward through the graph和one of the variables needed for gradient错误解决方案

Trying to backward through the graph a second timeone of the variables needed for gradient computation has been modified by an inplace operation
原创
发布博客 2022.04.14 ·
104 阅读 ·
3 点赞 ·
0 评论

Pytorch之nn.Conv1d学习个人见解

Pytorch之nn.Conv1d学习个人见解一、官方文档(务必先耐心阅读)官方文档:点击打开《CONV1D》二、Conv1d个人见解Conv1d类构成class torch.nn.Conv1d(in_channels, out_channels, kernel_size,stride=1, padding=0, dilation=1, groups=1, bias=True)in_channels(int)—输入数据的通道数。在文本分类中,即为句子中单个词的词向量的维度。 (word_vec
原创
发布博客 2022.04.12 ·
774 阅读 ·
3 点赞 ·
0 评论

Github邮件联系项目源代码作者简单方法

有时我们在导入别人github项目时有一些源代码的问题无法自行解决时就需要联系该github项目源代码的作者。
原创
发布博客 2022.04.07 ·
521 阅读 ·
2 点赞 ·
3 评论

基于Windows环境下CPU和GPU版本Tensorflow详细安装过程

TensorFlow 是一个开源的、基于 Python 的机器学习框架,它由 Google 开发,并在图形分类、音频处理、推荐系统和自然语言处理等场景下有着丰富的应用,是目前最热门的机器学习框架。
原创
发布博客 2022.04.02 ·
1720 阅读 ·
1 点赞 ·
0 评论
加载更多