人工智能之基于多变量线性回归的房屋销售价格预测详细解决方案

该博客详细介绍了如何运用多变量线性回归模型,结合梯度下降和正规方程,对房屋销售价格进行预测。通过分析俄勒冈州波特兰市的房屋数据,讨论了特征归一化、不同学习率和迭代次数对模型的影响。博主分享了实验结果和分析,指出未对目标变量标准化可能导致误差较大。此外,还提供了完整解决方案的资源下载链接,以及与Python编程相关的实用技巧和错误解决方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人工智能之基于多变量线性回归的房屋销售价格预测详细解决方案

一、目的

学习多变量线性回归模型与梯度下降算法设计机器学习程序,理解并掌握特征归一化,多变量的梯度下降以及正规方程方法,对房屋销售价格进行预测等。

二、背景知识

假设您正在出售房屋,而您想知道什么是好的市场价格。一种方法是首先收集有关最近出售房屋的信息,并建立房屋模型价格,通过房屋大小和卧室数量预测房屋售价。

文件ex1data2.txt是俄勒冈州波特兰市的房屋价格训练数据集。文件中的第一列是房屋的大小(以平方英尺为单位),第二列是卧室数,第三列是这所房子的价格。

三、基本原理算法

基本算法解释:点击打开观看吴恩达机器学习系列课程2-1到4-8

四、设计流程图

在这里插入图片描述

五、实验结果与分析

在这里插入图片描述
<

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rothschildlhl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值