1018. Champagne Tower
We stack glasses in a pyramid, where the first row has 1 glass, the second row has 2 glasses, the third row has 3 glasses and so on until the 100th row. Each glass holds one cup (250ml) of champagne.
Then, some champagne is poured in the first glass at the top. When the top most glass is full, any excess liquid poured will fall equally to the glass immediately to the left and right of it. When those glasses become full, any excess champagne will fall equally to the left and right of those glasses, and so on. (A glass at the bottom row has it's excess champagne fall on the floor.)
For example, after one cup of champagne is poured, the top most glass is full. After two cups of champagne are poured, the two glasses on the second row are half full. After three cups of champagne are poured, those two cups become full - there are 3 full glasses total now. After four cups of champagne are poured, the third row has the middle glass half full, and the two outside glasses are a quarter full, as pictured below.
Now after pouring some non-negative integer cups of champagne, return how full the j-th glass in the i-th row is (both i and j are 0 indexed).
Example
Example 1:
Input: poured = 1, query_glass = 1, query_row = 1
Output: 0.0
Explanation: We poured 1 cup of champange to the top glass of the tower (which is indexed as (0, 0)). There will be no excess liquid so all the glasses under the top glass will remain empty.
Example 2:
Input: poured = 2, query_glass = 1, query_row = 1
Output: 0.5
Explanation: We poured 2 cups of champange to the top glass of the tower (which is indexed as (0, 0)). There is one cup of excess liquid. The glass indexed as (1, 0) and the glass indexed as (1, 1) will share the excess liquid equally, and each will get half cup of champange.
Notice
poured
will be in the range of [0, 10 ^ 9].query_glass
andquery_row
will be in the range of [0, 99].
Input test data (one parameter per line)How to understand a testcase?
解法1:坐标型DP
注意dp[i][j] 表示注入到第i行的第j列的glass的香槟总量,而不是残留总量,否则转移方程很难确立。
class Solution {
public:
/**
* @param poured: an integer
* @param query_row: an integer
* @param query_glass: an integer
* @return: return a double
*/
double champagneTower(int poured, int query_row, int query_glass) {
double result = 0.0;
//dp[i][j] : amount of water filled into jth glass at row i
vector<vector<double>> dp(query_row + 1, vector<double>(query_row + 1, 0.0));
dp[0][0] = poured;
for (int i = 1; i <= query_row; ++i) {
if (dp[i - 1][0] > 1) dp[i][0] = (dp[i - 1][0] - 1) / 2;
if (dp[i - 1][query_row - 1] > 1) dp[i][query_row - 1] = (dp[i - 1][query_row - 1] - 1) / 2;
for (int j = 1; j <= query_row; ++j) {
if (dp[i - 1][j - 1] > 1) dp[i][j] += (dp[i - 1][j - 1] - 1) / 2;
if (dp[i - 1][j] > 1) dp[i][j] += (dp[i - 1][j] - 1) / 2;
}
}
return dp[query_row][query_glass] > 1.0 ? 1.0 : dp[query_row][query_glass];
}
};
解法2:解法1+滚动数组。
class Solution {
public:
/**
* @param poured: an integer
* @param query_row: an integer
* @param query_glass: an integer
* @return: return a double
*/
double champagneTower(int poured, int query_row, int query_glass) {
double result = 0.0;
//dp[i][j] : amount of water filled into jth glass at row i
vector<vector<double>> dp(2, vector<double>(query_row + 1, 0.0));
dp[0][0] = poured;
for (int i = 1; i <= query_row; ++i) {
if (dp[(i - 1) % 2][0] > 1) dp[i % 2][0] = (dp[(i - 1) % 2][0] - 1) / 2;
if (dp[(i - 1) % 2][query_row - 1] > 1) dp[i % 2][query_row - 1] = (dp[(i - 1) % 2][query_row - 1] - 1) / 2;
for (int j = 1; j <= query_row; ++j) {
if (dp[(i - 1) % 2][j - 1] > 1) dp[i % 2][j] += (dp[(i - 1) % 2][j - 1] - 1) / 2;
if (dp[(i - 1) % 2][j] > 1) dp[i % 2][j] += (dp[(i - 1) % 2][j] - 1) / 2;
}
}
return dp[query_row % 2][query_glass] > 1.0 ? 1.0 : dp[query_row % 2][query_glass];
}
};
解法3:解法1+反数组顺序,降成1维。