树上的动态规划学习1 - 无根树转有根树

首先回顾一下树和图的关系。无环的连通图就是树。无根树就是无环连通无向图。无根树关键就是无向,也就是节点之间平等,不存在父子关系。有根树就是在无根树的基础上加上父子关系。当我们任意指定一个节点作为根节点,就可以把无根树转化为有根数。

本文的代码参考了 http://blog.csdn.net/u010258605/article/details/44241263

#include <iostream>
#include <vector>
using namespace std;
#define N 1000000+10
vector<int> G[N];   //stores the graph
int parent[N];
int n;

void read_tree()
{
    int u, v;
    cin>>n;
    for (int i = 0; i < n - 1; i++)    //注意无向图n个节点,边数为n-1
    {
        cin>>u>>v;
        G[u].push_back(v);
        G[v].push_back(u);
    }
}

void dfs(int u, int father)
{
    for (int i = 0; i < G[u].size(); i++)
    {
        if (G[u][i] != father) { //加此判断,防止无限递归
            parent[G[u][i]] = u;
            dfs(G[u][i], u);
        }
    }
}

int main()
{
    read_tree();
    int root;
    cin >> root;
    parent[root] = -1;
    dfs(root, -1);
    for (int i = 0; i < n; i++)
        cout << parent[i] << ' ';
    cout<<endl;
    return 0;
}


输入和输出结果如下:

Input:

6
3 0
0 1
0 2
3 5
5 4
3

output:

3 0 0 -1 5 3

 注意:

1) 无根树是连通的,所以任选一个节点,用递归可以到达所有的节点。
2) 不需要vis[],用 if (G[u][i] != father) 就可以了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值