首先回顾一下树和图的关系。无环的连通图就是树。无根树就是无环连通无向图。无根树关键就是无向,也就是节点之间平等,不存在父子关系。有根树就是在无根树的基础上加上父子关系。当我们任意指定一个节点作为根节点,就可以把无根树转化为有根数。
本文的代码参考了 http://blog.csdn.net/u010258605/article/details/44241263
#include <iostream>
#include <vector>
using namespace std;
#define N 1000000+10
vector<int> G[N]; //stores the graph
int parent[N];
int n;
void read_tree()
{
int u, v;
cin>>n;
for (int i = 0; i < n - 1; i++) //注意无向图n个节点,边数为n-1
{
cin>>u>>v;
G[u].push_back(v);
G[v].push_back(u);
}
}
void dfs(int u, int father)
{
for (int i = 0; i < G[u].size(); i++)
{
if (G[u][i] != father) { //加此判断,防止无限递归
parent[G[u][i]] = u;
dfs(G[u][i], u);
}
}
}
int main()
{
read_tree();
int root;
cin >> root;
parent[root] = -1;
dfs(root, -1);
for (int i = 0; i < n; i++)
cout << parent[i] << ' ';
cout<<endl;
return 0;
}
输入和输出结果如下:
Input:
6
3 0
0 1
0 2
3 5
5 4
3
output:
3 0 0 -1 5 3
注意:
1) 无根树是连通的,所以任选一个节点,用递归可以到达所有的节点。
2) 不需要vis[],用 if (G[u][i] != father) 就可以了。