LintCode 667: Longest Palindromic Subsequence (DP 经典题)

  1. Longest Palindromic Subsequence

Given a string s, find the longest palindromic subsequence’s length in s. You may assume that the maximum length of s is 1000.

Example
Example1

Input: “bbbab”
Output: 4
Explanation:
One possible longest palindromic subsequence is “bbbb”.
Example2

Input: “bbbbb”
Output: 5

解法1:
经典DP题。我们最后需要返回dp[0][len-1],所以两个for loop是下面的代码:

        for (int i = len - 1; i >= 0; --i) {
            cout<<"i="<<i<<endl;
            for (int j = i + 1; j < len; ++j) {

对于输入 “bbbab”, dp[][] 值为:

1 2 3 3 4
0 1 2 2 3
0 0 1 1 3
0 0 0 1 1
0 0 0 0 1

注意下面两种写法不对:
1)
for (int i = 0; i < len - 1; ++i) {
for (int j = i + 1; j < len; ++j) {

It is wrong as dp[0][len - 1] should be the final result.

  1. for (int i = 0; i < len - 1; ++i) {
    for (int j = 0; j < len; ++j) {
    It is wrong as dp[i+1][j] will exceed the boundary.

代码如下:

class Solution {
public:
    /**
     * @param s: the maximum length of s is 1000
     * @return: the longest palindromic subsequence's length
     */
    int longestPalindromeSubseq(string &s) {
        int len = s.size();
        if (len <= 1) return len;
        
        vector<vector<int>> dp(len, vector<int>(len, 0));
        
        for (int i = 0; i < len; ++i) {
            dp[i][i] = 1;
        }
        for (int i = len - 1; i >= 0; --i) {
            for (int j = i + 1; j < len; ++j) {
                if (s[i] == s[j]) {
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                } else {
                    dp[i][j] = max(dp[i][j - 1], dp[i + 1][j]);
                }
            }
        }
        return dp[0][len - 1];
    }
};

代码同步在
https://github.com/luqian2017/Algorithm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值