- Longest Palindromic Subsequence
Given a string s, find the longest palindromic subsequence’s length in s. You may assume that the maximum length of s is 1000.
Example
Example1
Input: “bbbab”
Output: 4
Explanation:
One possible longest palindromic subsequence is “bbbb”.
Example2
Input: “bbbbb”
Output: 5
解法1:
经典DP题。我们最后需要返回dp[0][len-1],所以两个for loop是下面的代码:
for (int i = len - 1; i >= 0; --i) {
cout<<"i="<<i<<endl;
for (int j = i + 1; j < len; ++j) {
对于输入 “bbbab”, dp[][] 值为:
1 2 3 3 4
0 1 2 2 3
0 0 1 1 3
0 0 0 1 1
0 0 0 0 1
注意下面两种写法不对:
1)
for (int i = 0; i < len - 1; ++i) {
for (int j = i + 1; j < len; ++j) {
It is wrong as dp[0][len - 1] should be the final result.
- for (int i = 0; i < len - 1; ++i) {
for (int j = 0; j < len; ++j) {
It is wrong as dp[i+1][j] will exceed the boundary.
代码如下:
class Solution {
public:
/**
* @param s: the maximum length of s is 1000
* @return: the longest palindromic subsequence's length
*/
int longestPalindromeSubseq(string &s) {
int len = s.size();
if (len <= 1) return len;
vector<vector<int>> dp(len, vector<int>(len, 0));
for (int i = 0; i < len; ++i) {
dp[i][i] = 1;
}
for (int i = len - 1; i >= 0; --i) {
for (int j = i + 1; j < len; ++j) {
if (s[i] == s[j]) {
dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
dp[i][j] = max(dp[i][j - 1], dp[i + 1][j]);
}
}
}
return dp[0][len - 1];
}
};
代码同步在
https://github.com/luqian2017/Algorithm