LintCode 1185: Complex Number Multiplication

  1. Complex Number Multiplication
    Given two strings representing two [complex numbers].

You need to return a string representing their multiplication. Note i^2 = -1 according to the definition.

Example
Example 1:
Input: “1+1i”, “1+1i”
Output: “0+2i”
Explanation: (1 + i) * (1 + i) = 1 + i^2 + 2 * i = 2i, and you need convert it to the form of 0+2i.
Example 2:
Input: “1±1i”, “1±1i”
Output: “0±2i”
Explanation: (1 - i) * (1 - i) = 1 + i^2 - 2 * i = -2i, and you need convert it to the form of 0±2i.
Notice
1.The input strings will not have extra blank.
2.The input strings will be given in the form of a+bi, where the integer a and b will both belong to the range of [-100, 100]. And the output should be also in this form.

这题好像主要考string的操作:

  1. int to string 用 to_string()
  2. string to int 用 stoi()
  3. string.find_first_of() 返回第一个出现的字符的位置。
    代码如下 :
class Solution {
public:
    /**
     * @param a: a string
     * @param b: a string
     * @return: a string representing their multiplication
     */
    string complexNumberMultiply(string &a, string &b) {
        string aR, bR;
        string aV, bV;
        size_t pos;
        
        pos = a.find_first_of('+');
        aR = a.substr(0, pos);
        aV = a.substr(pos + 1);
        aV.pop_back();     //remove 'i', the same as aV = aV.sub_str(0, aV.size() - 1);
    
        pos = b.find_first_of('+');
        bR = b.substr(0, pos);
        bV = b.substr(pos + 1);
        bV.pop_back();
        
        int aR_int = stoi(aR);
        int aV_int = stoi(aV);
        int bR_int = stoi(bR);
        int bV_int = stoi(bV);
        
        return to_string(aR_int * bR_int - aV_int * bV_int) + 
                 "+" + 
                 to_string(aR_int * bV_int + aV_int * bR_int) +
                 "i";
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值