LintCode 900. Closest Binary Search Tree Value

本文介绍了一种有效的方法,通过中序遍历二叉搜索树来找到最接近给定目标值的节点值。这种方法适用于目标值为浮点数的情况,并保证了在树中存在唯一最接近的目标值。
  1. Closest Binary Search Tree Value
    中文English
    Given a non-empty binary search tree and a target value, find the value in the BST that is closest to the target.

Example
Example1

Input: root = {5,4,9,2,#,8,10} and target = 6.124780
Output: 5
Example2

Input: root = {3,2,4,1} and target = 4.142857
Output: 4
Notice
Given target value is a floating point.
You are guaranteed to have only one unique value in the BST that is closest to the target.

解法1:
InOrder Traversal。
注意: target是double,要注意转换!
代码如下:

/**
 * Definition of TreeNode:
 * class TreeNode {
 * public:
 *     int val;
 *     TreeNode *left, *right;
 *     TreeNode(int val) {
 *         this->val = val;
 *         this->left = this->right = NULL;
 *     }
 * }
 */

class Solution {
public:
    /**
     * @param root: the given BST
     * @param target: the given target
     * @return: the value in the BST that is closest to the target
     */
    int closestValue(TreeNode * root, double target) {
        if (!root) return 0;
        minGap = (double)INT_MAX;
        result = root->val;
        inOrderTraversal(root, target);
        return result;
    }

private:
    void inOrderTraversal(TreeNode * root, double target) {
        if (!root) return;
        inOrderTraversal(root->left, target);
        double gap = abs((double)root->val - target);
        if (gap < minGap) {
            minGap = gap;
            result = root->val;
        }
        inOrderTraversal(root->right, target)
;    }
    
    int result;
    double minGap;
};
内容概要:本文围绕EKF SLAM(扩展卡尔曼滤波同步定位与地图构建)的性能展开多项对比实验研究,重点分析在稀疏与稠密landmark环境下、预测与更新步骤同时进行与非同时进行的情况下的系统性能差异,并进一步探讨EKF SLAM在有色噪声干扰下的鲁棒性表现。实验考虑了不确定性因素的影响,旨在评估不同条件下算法的定位精度与地图构建质量,为实际应用中EKF SLAM的优化提供依据。文档还提及多智能体系统在遭受DoS攻击下的弹性控制研究,但核心内容聚焦于SLAM算法的性能测试与分析。; 适合人群:具备一定机器人学、状态估计或自动驾驶基础知识的科研人员及工程技术人员,尤其是从事SLAM算法研究或应用开发的硕士、博士研究生和相关领域研发人员。; 使用场景及目标:①用于比较EKF SLAM在不同landmark密度下的性能表现;②分析预测与更新机制同步与否对滤波器稳定性与精度的影响;③评估系统在有色噪声等非理想观测条件下的适应能力,提升实际部署中的可靠性。; 阅读建议:建议结合MATLAB仿真代码进行实验复现,重点关注状态协方差传播、观测更新频率与噪声模型设置等关键环节,深入理解EKF SLAM在复杂环境下的行为特性。稀疏 landmark 与稠密 landmark 下 EKF SLAM 性能对比实验,预测更新同时进行与非同时进行对比 EKF SLAM 性能对比实验,EKF SLAM 在有色噪声下性能实验
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值