历届真题 杨辉三角形【第十二届】【省赛】【B组】

该博客讨论了如何找到杨辉三角形数列中第一次出现特定数值N的位置。给出了输入输出格式、样例及评测用例规模,并分享了作者在准备比赛中遇到的内存超限问题,寻求解决之道。
摘要由CSDN通过智能技术生成

【题目描述】
如果我们按从上到下、从左到右的顺序把所有数排成一列,可以得到如下数列:
1,1, 1,1, 2,1,1,3,3,1,1,4,6,4,1,…
给定一个正整数N,请你输出数列中第一次出现N是在第几个数?
【输入格式】
H.
输入一个整数N。
【输出格式】
输出一个整数代表答案。
【样例输入】
6
【样例输出】
13

【评测用例规模与约定】
对于20%的评测用例,1≤N≤10;对于所有评测用例,1≤N≤1000000000。

import java.util.Scanner;
public class Main {
   
	public static int findNum(int N) {
   
		int arr[][] 
### 回答1: 题目描述: 给定一个正整数n,输出杨辉三角形的前n行。 输入格式: 输入一个正整数n。 输出格式: 输出杨辉三角形的前n行,每行数字之间用一个空格隔开。 样例输入: 5 样例输出: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 数据范围: 1≤n≤34 解题思路: 杨辉三角形的每一行都可以看成是一个二项式系数,第i行第j个数表示为C(i-1,j-1),可以通过递推公式C(i,j)=C(i-1,j-1)+C(i-1,j)来求得。 代码实现: ### 回答2: 杨辉三角形是一种数学规律,由中国古代数学家杨辉发现而得名,又称杨辉图。在数学中,杨辉三角形是一个数表,其中每个数是由上方两数相加而来。它起初只是用于排列合的计算,但它的性质也使它成为了许多数学领域的重要工具。 该题中要求实现杨辉三角形的生成,并输出第 n 行第 k 项的值。这题使用的是合数的性质:杨辉三角形的第 n 行第 k 个数就是合数 $C_{n-1}^{k-1}$。 因此,我们可以很容易地实现对杨辉三角形的生成,只需要使用两重循环即可,复杂度为 $O(n^2)$。而输出第 n 行第 k 个数的值则只需要计算合数 $C_{n-1}^{k-1}$ 即可,这可以使用递推公式求数合数来完成,复杂度为 $O(n)$,因此总时间复杂度为 $O(n^2)$。 此外,在实现过程中,还需要注意一些细节,如数下标的问题,以及输入输出格式的要求等。 总之,这道题要求我们掌握杨辉三角形的生成和合数的计算方法,以及一些基本的编程技巧,能够灵活运用循环和递推等方法解决问题。掌握这些知识和技巧不仅可以帮助我们解决这道题,也能帮助我们解决其他相关的数学和编程问题。 ### 回答3: 这道题为杨辉三角形,要求输出p行杨辉三角形的前n项之和。杨辉三角形是中学数学中的常见概念,在数学上有重要应用。开始时,我们先输入测试数据,其中包括P、n和杨辉三角形。然后,我们就要开始对数据进行处理。首先,我们要创建一个二维数来存储杨辉三角形中的每个元素,并对其进行初始化。 其次,我们需要使用嵌套的for循环来填充数。外层循环用来遍历杨辉三角形的每一行,内层循环则用来填充每一行的元素。填充的方法是通过将上一行相邻元素相加的方式来得到当前行的元素。每行第一个和最后一个元素都为1。在填充完杨辉三角形后,我们通过for循环来输出前n项的和,最后将结果返回。 需要注意的是,在处理数据时要注意异常情况,例如P、n的取值范围以及杨辉三角形的格式是否正确等。 总体来说,这道题需要我们掌握二维数和嵌套循环的使用方法,并要注意输入输出的格式。可以通过多练习类似的题目来加深对知识点的理解和熟练度。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值