这道题目竟然真的ac了,好神奇啊。
当时算的时间复杂度为O(T*N!),理论值达到7kw。
做法:
预处理dp数组,使得dp[i][j]代表j放在i后面长度的增加值。
然后dfs,dfs的时候要注意,用一个二进制数标记当前状态。
二进制中0代表当前位置已取,1代表当前位置未取。每次查找二进制的子状态。
然后看看哪个位置在子状态消失了。
一定要直接查找子状态。
查找方法详参我的另一篇博客:http://blog.csdn.net/rowanhaoa/article/details/16370215
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
using namespace std;
char str[31][31];
int dp[31][31];
int vis[31];
int n;
int ans;
int fc[(1<<21)];
int houji(int x,int y)
{
int i,j;
int len1=strlen(str[x]);
int len2=strlen(str[y]);
for(i=0;i<len1;i++)
{
if(str[x][i]==str[y][0])
{
for(j=0;j<len2&&i+j<len1;j++)
{
if(str[x][i+j]!=str[y][j])break;
}
if(j==len2||i+j==len1)break;
}
}
int anss=len2-(len1-i);
if(anss<=0)vis[y]=1;
return anss;
}
void chu()
{
int i,j;
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
if(i==j||vis[i]||vis[j])continue;
dp[i][j]=houji(i,j);
}
}
}
void dfs(int x,int len,int tai)
{
//cout<<x<<" "<<len<<" "<<tai<<endl;
tai=tai-(1<<(x-1));
int leap=0;
int ts;
ts=tai;
while(tai)
{
int bb;
bb=(tai-1)&tai;
int y=tai-bb;
y=fc[y];
y++;
tai=tai-(1<<(y-1));
dfs(y,len+dp[x][y],ts);
leap=1;
}
if(leap==0)ans=min(ans,len);
}
int main()
{
int T,i,j;
j=1;
for(i=0;i<21;i++)
{
fc[j]=i;
j=j*2;
}
for(j=1;j<(1<<21);j++)
{
if(fc[j]==0)fc[j]=fc[j-1];
}
scanf("%d",&T);
while(T--)
{
ans=99999999;
memset(vis,0,sizeof(vis));
scanf("%d",&n);
for(i=1;i<=n;i++)scanf("%s",str[i]);
chu();
int ss=(1<<n)-1;
for(i=1;i<=n;i++)
if(vis[i])ss-=(1<<(i-1));
int ll=0;
for(i=1;i<=n;i++)
{
if(vis[i]==0)dfs(i,strlen(str[i]),ss);
}
cout<<ans<<endl;
}
return 0;
}