codeforces-148D-Bag of mice-概率DP

dp[x][y]:现在有x个白老鼠,y个黑老鼠,公主赢的概率。

那么:

如果公主直接拿到白老鼠,概率为x/(x+y),公主赢。

如果公主拿到黑老鼠,概率为y/(x+y),那么公主如果想赢,龙必须拿到黑老鼠,概率为(y-1)/(x+y-1);

那么逃跑的老鼠为黑老鼠的概率为(y-2)/(x+y-2),为白老鼠的概率为(x)/(x+y-2);

那么dp[x][y]=x/(x+y)+y/(x+y) * (y-1)/(x+y-1) * ( (y-2)/(x+y-2)  * dp[x][y-3]   +  (x)/(x+y-2)  *  dp[x-1][y-2] );

记忆化深搜也行,直接递推DP也行。

#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stdlib.h>
#include<vector>
#include<cmath>
#include<queue>
#include<set>
#include<stack>
using namespace std;
#define N 100010
#define LL long long
#define INF 0xfffffff
#define maxn 1100
double dp[maxn][maxn];
double dos(int x,int y)
{
    if(x<0||y<0)return 0;
    if(x==0)return 0;
    if(y==0)return 1;
    if(dp[x][y]>-0.5)return dp[x][y];
    double a,b;
    a=1.0*x;
    b=1.0*y;
    dp[x][y]=a/(a+b);
    if(x+y>=3)
    {
        dp[x][y]+=(b*(b-1)/((a+b)*(a+b-1)))*
        (dos(x-1,y-2)*a/(a+b-2)+dos(x,y-3)*(b-2)/(a+b-2));
    }
  //  cout<<x<<" "<<y<<" "<<dp[x][y]<<endl;
    return dp[x][y];
}
int main()
{
    int a,b;
    while(~scanf("%d%d",&a,&b))
    {
        memset(dp,-1,sizeof(dp));
        printf("%.10lf\n",dos(a,b));
    }
    return 0;
}











评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值