这题完全毫无头绪,不看网上的答案,我认为我自己是完全写不出来的。就算看网上的答案看懂了之后,还是觉得这题的代码不属于自己。满满都是不安感。
将一个正整数N分解成几个正整数相加,可以有多种分解方法,例如7=6+1,7=5+2,7=5+1+1,…。编程求出正整数N的所有整数分解式子。
输入格式:
每个输入包含一个测试用例,即正整数N (0<N≤30)。
输出格式:
按递增顺序输出N的所有整数分解式子。递增顺序是指:对于两个分解序列N1={n1,n2,⋯}和N2={m1,m2,⋯},若存在i使得n1=m1,⋯,ni=mi,但是ni+1<mi+1,则N1序列必定在N2序列之前输出。每个式子由小到大相加,式子间用分号隔开,且每输出4个式子后换行。
输入样例:
7
输出样例:
7=1+1+1+1+1+1+1;7=1+1+1+1+1+2;7=1+1+1+1+3;7=1+1+1+2+2
7=1+1+1+4;7=1+1+2+3;7=1+1+5;7=1+2+2+2
7=1+2+4;7=1+3+3;7=1+6;7=2+2+3
7=2+5;7=3+4;7=7
:
#include <stdio.h>
#include <stdlib.h>
int top = -1;
int n = 0;
int i = 0;
int cnt = 1;
int sum = 0;
s[31] = {0};
void division(int i);
int main()
{
scanf("%d", &n);
division(1);
system("pause");
}
void division (int i)
{
int j;
if(sum>n)
{
return;
}
if(sum == n)
{
printf("%d=", n);
for(j=0; j<top; j++)
{
printf("%d+", s[j]);
}
if(cnt%4==0 || s[j]==n)
{
printf("%d\n", s[j]);
}
else
{
printf("%d;",s[j]);
}
cnt++;
return;
}
for(j=i; j<=n; j++)
{
s[++top] = j;
sum += j;
division(j);
top--;
sum -= j;
}
}