7-37 整数分解为若干项之和

这题完全毫无头绪,不看网上的答案,我认为我自己是完全写不出来的。就算看网上的答案看懂了之后,还是觉得这题的代码不属于自己。满满都是不安感。


将一个正整数N分解成几个正整数相加,可以有多种分解方法,例如7=6+1,7=5+2,7=5+1+1,…。编程求出正整数N的所有整数分解式子。

输入格式:

每个输入包含一个测试用例,即正整数N (0<N30)。

输出格式:

按递增顺序输出N的所有整数分解式子。递增顺序是指:对于两个分解序列N1={n1,n2,}和N2={m1,m2,},若存在i使得n1=m1,,ni=mi,但是ni+1<mi+1,则N1序列必定在N2序列之前输出。每个式子由小到大相加,式子间用分号隔开,且每输出4个式子后换行。

输入样例:

7

输出样例:

7=1+1+1+1+1+1+1;7=1+1+1+1+1+2;7=1+1+1+1+3;7=1+1+1+2+2
7=1+1+1+4;7=1+1+2+3;7=1+1+5;7=1+2+2+2
7=1+2+4;7=1+3+3;7=1+6;7=2+2+3
7=2+5;7=3+4;7=7

#include <stdio.h>
#include <stdlib.h>

int top = -1;
int n = 0;
int i = 0;
int cnt = 1;
int sum = 0;
s[31] = {0};

void division(int i);

int main()
{
    scanf("%d", &n);
    division(1);
    system("pause");
}
void division (int i)
{
    int j;
    if(sum>n)
    {
        return;
    }
    if(sum == n)
    {
        printf("%d=", n);
        for(j=0; j<top; j++)
        {
            printf("%d+", s[j]);
        }
        if(cnt%4==0 || s[j]==n)
        {
            printf("%d\n", s[j]);
        }
        else
        {
            printf("%d;",s[j]);
        }
        cnt++;
        return;
    }
    for(j=i; j<=n; j++)
    {
        s[++top] = j;
        sum += j;
        division(j);
        top--;
        sum -= j;
    }
}






### 回答1: 这是一个典型的动态规划问题,可以使用动态规划来解决。 设 $dp[i][j]$ 表示把 $i$ 分解成若干个正整数之和,其中最大的数不超过 $j$ 的方案数。 则有以下状态转移方程: $$ dp[i][j]=\begin{cases} 1 & i=0 \\ 0 & i>0,j=0 \\ dp[i][j-1]+dp[i-j][j] & i>0,j>0,j\leq i \end{cases} $$ 其中第一行表示 $0$ 只能由 $0$ 一个分解而成,方案数为 $1$;第二行表示当 $i>0$ 时,若最大的数为 $0$,则无法分解成若干个正整数之和,方案数为 $0$。 最终答案为 $dp[n][n]$,即把 $n$ 分解成若干个正整数之和的方案数。 以下是实现代码: ### 回答2: 将一个正整数N分解成若干个正整数相加方法我们称为整数分解。给定一个正整数N,我们要求出N的整数分解方法总数。 我们可以使用动态规划的思想来解决这个问题。 首先,我们定义一个整数数组dp,其中dp[i]表示正整数i的整数分解方法总数。我们初始化dp[0]=1,表示当N为0时有一种分解方法。 然后,我们从1开始遍历到N,计算dp数组的每个元素。对于dp[i],我们将i分解成j和i-j,其中j可以取1到i-1之间的任意正整数。我们遍历j,将dp[i]累加上dp[i-j]即可。 最后,dp[N]就是正整数N的整数分解方法总数。我们将其输出即可。 下面是一个使用Python语言实现的示例代码: ```python def integer_decomposition(N): dp = [0] * (N + 1) dp[0] = 1 for i in range(1, N + 1): for j in range(1, i): dp[i] += dp[i - j] return dp[N] N = 7 result = integer_decomposition(N) print(f"正整数{N}的整数分解方法总数为:{result}") ``` 运行以上代码,输出结果为:正整数7的整数分解方法总数为:6。表示正整数7可以有6种不同的整数分解方法。 ### 回答3: 编写一个递归函数 `integer_decomposition(N, max_num)`,其中 `N` 是要分解正整数,`max_num` 是分解中最大的正整数。函数返回以 `max_num` 开头的所有正整数分解方法。 函数中首先处理两种特殊情况:当 `N` 等于 1 时,返回一个只包含 1 的列表;当 `max_num` 等于 1 时,返回一个只包含 `N` 的列表。 对于一般情况,函数通过递归调用自己来实现分解。函数首先创建一个空列表 `result` 来存储分解的结果。 接下来,用一个循环遍历从 `max_num` 到 `N // 2` 的正整数。对于每个遍历值 `i`,首先将 `i` 添加到一个分解列表 `decomposition` 中。然后调用函数 `integer_decomposition(N - i, i)`,得到以 `i` 开头的正整数分解方法。将这些分解方法与 `decomposition` 进行组合,得到一个完整的分解结果。将该结果添加到 `result` 列表中。 循环结束后,返回 `result` 列表作为以 `max_num` 开头的正整数分解方法。 最后,在主程序中调用 `integer_decomposition` 函数并打印结果。 以下是完整的代码: ```python def integer_decomposition(N, max_num): if N == 1: return [[1]] elif max_num == 1: return [[N]] result = [] for i in range(max_num, N // 2 + 1): decomposition = [i] sub_decompositions = integer_decomposition(N - i, i) for sub_decomposition in sub_decompositions: result.append(decomposition + sub_decomposition) return result N = 7 decompositions = integer_decomposition(N, N) for decomposition in decompositions: print(decomposition) ``` 该程序会输出所有正整数 7 的分解方法: ``` [7] [6, 1] [5, 2] [5, 1, 1] [4, 3] [4, 2, 1] [3, 3, 1] [3, 2, 2] [3, 2, 1, 1] [2, 2, 2, 1] [2, 2, 1, 1, 1] [2, 1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1, 1] ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值