【NLP学习-2】逻辑回归


学习笔记:来源https://github.com/NLP-LOVE/ML-NLP/blob/master/Machine%20Learning/2.Logistics%20Regression/2.Logistics%20Regression.md

1 什么是逻辑回归

用于二分类问题。大家都熟悉线性回归,一般形式是Y=aX+b,y的取值范围是[-∞, +∞],有这么多取值,怎么进行分类呢?

把Y的结果带入一个非线性变换的Sigmoid函数中,即可得到[0,1]之间取值范围的数S,S可以把它看成是一个概率值,如果我们设置概率阈值为0.5,那么S大于0.5可以看成是正样本,小于0.5看成是负样本,就可以进行分类了。

2 Sigmoid函数

在这里插入图片描述
sigmoid函数求导后:
在这里插入图片描述

原来的二元回归变成:
在这里插入图片描述

3 损失函数

对数似然函数
在这里插入图片描述
整合后:
在这里插入图片描述

4 优点

  • LR能以概率的形式输出结果,而非只是0,1判定。因为结果是概率,可以做ranking model
  • R的可解释性强,可控度高

5 应用

  • CTR(Click-Through-Rate)预估/推荐系统的learning to rank/各种分类场景。
  • 某搜索引擎厂的广告CTR预估基线版是LR。
  • 某电商搜索排序/广告CTR预估基线版是LR。
  • 某电商的购物搭配推荐用了大量LR。
  • 某现在一天广告赚1000w+的新闻app排序基线是LR。

6 逻辑回归常用的优化方法

一阶方法

梯度下降、随机梯度下降、mini 随机梯度下降法。随机梯度下降不但速度上比原始梯度下降要快,局部最优化问题时可以一定程度上抑制局部最优解的发生。

二阶方法:牛顿法、拟牛顿法

凸优化问题:牛顿法其实就是通过切线与x轴的交点不断更新切线的位置,直到达到曲线与x轴的交点得到方程解。

实际应用中牛顿法首先选择一个点作为起始点,并进行一次二阶泰勒展开得到导数为0的点进行一个更新,直到达到要求,这时牛顿法也就成了二阶求解问题,比一阶方法更快。

缺点:牛顿法是定长迭代,没有步长因子,所以不能保证函数值稳定的下降,严重时甚至会失败。还有就是牛顿法要求函数一定是二阶可导的。而且计算Hessian矩阵的逆复杂度很大。

拟牛顿法: 不用二阶偏导而是构造出Hessian矩阵的近似正定对称矩阵的方法称为拟牛顿法。拟牛顿法的思路就是用一个特别的表达形式来模拟Hessian矩阵或者是他的逆使得表达式满足拟牛顿条件。主要有DFP法(逼近Hession的逆)、BFGS(直接逼近Hession矩阵)、 L-BFGS(可以减少BFGS所需的存储空间)。

6 逻辑斯特回归为什么要对特征进行离散化

  • 非线性逻辑回归属于广义线性模型,表达能力受限;单变量离散化为N个后,每个变量有单独的权重,相当于为模型引入了非线性,能够提升模型表达能力,加大拟合
  • 速度快。稀疏向量内积乘法运算速度快,计算结果方便存储,容易扩展;
  • 鲁棒性。离散化后的特征对异常数据有很强的鲁棒性:比如一个特征是年龄>30是1,否则0。如果特征没有离散化,一个异常数据“年龄300岁”会给模型造成很大的干扰;
  • 方便交叉与特征组合:离散化后可以进行特征交叉,由M+N个变量变为M*N个变量,进一步引入非线性,提升表达能力;
  • 稳定性:特征离散化后,模型会更稳定,比如如果对用户年龄离散化,20-30作为一个区间,不会因为一个用户年龄长了一岁就变成一个完全不同的人。当然处于区间相邻处的样本会刚好相反,所以怎么划分区间是门学问;
  • 简化模型:特征离散化以后,起到了简化了逻辑回归模型的作用,降低了模型过拟合的风险。

记:非线性、鲁棒性、速度快

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值