破解滑块验证码的实现

滑块验证码是一种常见的反自动化机制,通过要求用户拖动滑块以匹配缺口的位置来验证用户的真实性。在本文中,我们将演示如何使用 Node.js 进行滑块验证码的自动化破解。我们将分为以下几个步骤:

获取滑块验证码的图片
处理并识别滑块位置
生成滑动轨迹
提交滑块验证
一、获取滑块验证码的图片
首先,我们需要获取滑块验证码的背景图和滑块图。这通常通过发送一个 HTTP 请求来实现,返回的响应中包含这些图片的 URL。

javascript
const axios = require('axios');
const fs = require('fs');

async function getCaptchaImages() {
    const response = await axios.get('https://captcha.example.com/getCaptcha');
    const { bg, slider } = response.data;
    
    const bgImage = await axios.get(bg, { responseType: 'arraybuffer' });
    const sliderImage = await axios.get(slider, { responseType: 'arraybuffer' });
    
    fs.writeFileSync('bg.jpg', bgImage.data);
    fs.writeFileSync('slider.png', sliderImage.data);
    
    return { bg: 'bg.jpg', slider: 'slider.png' };
}
二、处理并识别滑块位置
接下来,我们需要处理这些图片以识别滑块需要移动的位置。我们可以使用 OpenCV 库来实现这一点。由于 OpenCV 本身是用 C++ 编写的,我们可以通过 Node.js 的 opencv4nodejs 包来调用 OpenCV 的功能。

安装 OpenCV 和 opencv4nodejs
bash

npm install opencv4nodejs
识别滑块位置的代码
javascript
复制代码
const cv = require('opencv4nodejs');

function getSliderPosition(bgImagePath, sliderImagePath) {
    const bg = cv.imread(bgImagePath);
    const slider = cv.imread(sliderImagePath);

    const result = bg.matchTemplate(slider, cv.TM_CCOEFF_NORMED);
    const minMax = result.minMaxLoc();
    const { maxLoc: { x, y } } = minMax;

    return x; // 返回滑块需要移动的水平距离
}
三、生成滑动轨迹
在识别到滑块需要移动的距离后,我们需要生成滑动轨迹。这一轨迹应模拟人类滑动行为,使得滑动看起来更真实。

javascript

function generatePath(distance) {
    const path = [];
    const steps = 20; // 设定步数
    for (let i = 0; i < steps; i++) {
        const x = Math.round((distance / steps) * i);
        const y = Math.random() * 2 - 1; // 模拟滑动过程中的微小抖动
        const time = i * 10; // 每步的时间间隔
        path.push([x, y, time]);
    }
    return path;
}
四、提交滑块验证
最后,我们需要将生成的滑动轨迹提交到服务器进行验证。这一步通常也是通过发送 HTTP 请求来实现的。

javascript

async function submitSliderVerification(path) {
    const response = await axios.post('https://captcha.example.com/verify', {
        path: path,
        otherParams: 'other necessary parameters'
    });
    return response.data;
}
五、主流程
将所有步骤整合到一个主函数中,完成滑块验证码的破解过程。

javascript

(async () => {
    const images = await getCaptchaImages();
    const distance = getSliderPosition(images.bg, images.slider);
    const path = generatePath(distance);
    const result = await submitSliderVerification(path);
    console.log('验证结果:', result);
})();
六、参数差异对比
在不同的请求中,参数会有一些变化。通过对比这些变化,我们可以找到关键的参数并进行必要的处理。主要变化的参数包括:

rid:每次请求的唯一标识符
bg 和 slider 的 URL:每次验证码的图片地址
path:滑动轨迹

更多内容联系1436423940

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值