《python+opencv3.3视频教学 基础入门》其他形态学操作 笔记

25 篇文章 0 订阅
15 篇文章 0 订阅

顶帽
顶帽是原图像与开操作之间的差值图像(右图),最后得到的是原图中各个小块的高亮区,即提取出了原图中的高亮斑点。
在这里插入图片描述

黑帽
黑帽是闭操作图像与原图像的差值图像,可以提取出原图中的黑色斑点。
在这里插入图片描述

形态学梯度
形态学梯度包含:基本梯度内部梯度外部梯度
基本梯度是用膨胀后的图像减去腐蚀后的图像得到差值图像,也是opencv中支持的计算形态学梯度的方法,而此方法得到的梯度又被称为基本梯度。
内部梯度是用原图像减去腐蚀之后的图像得到的差值图像,称为图像的内部梯度。
外部梯度图像膨胀之后再减去原来的图像得到的差值图像,称为图像的外部梯度。

视频源码:

import cv2 as cv
import numpy as np


def top_hat_demo(image):
    gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
    # kernel = cv.getStructuringElement(cv.MORPH_RECT, (5, 5))   # 获取核,形状是 5 x 5 像素的矩形
    kernel = cv.getStructuringElement(cv.MORPH_RECT, (15, 15))
    dst = cv.morphologyEx(gray, cv.MORPH_TOPHAT, kernel)
    dst = cv.add(dst, 100)
    cv.imshow("top-hat", dst)


def black_hat_demo(image):
    gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
    # kernel = cv.getStructuringElement(cv.MORPH_RECT, (5, 5))   # 获取核,形状是 5 x 5 像素的矩形
    kernel = cv.getStructuringElement(cv.MORPH_RECT, (15, 15))
    dst = cv.morphologyEx(gray, cv.MORPH_BLACKHAT, kernel)
    dst = cv.add(dst, 100)
    cv.imshow("black-hat", dst)


def top_hat_binary_demo(image):
    gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
    ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
    # kernel = cv.getStructuringElement(cv.MORPH_RECT, (5, 5))   # 获取核,形状是 5 x 5 像素的矩形
    kernel = cv.getStructuringElement(cv.MORPH_RECT, (15, 15))
    dst = cv.morphologyEx(binary, cv.MORPH_TOPHAT, kernel)
    cv.imshow("top-hat-binary", dst)


def black_hat_binary_demo(image):
    gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
    ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
    # kernel = cv.getStructuringElement(cv.MORPH_RECT, (5, 5))   # 获取核,形状是 5 x 5 像素的矩形
    kernel = cv.getStructuringElement(cv.MORPH_RECT, (15, 15))
    dst = cv.morphologyEx(binary, cv.MORPH_BLACKHAT, kernel)
    cv.imshow("black-hat-binary", dst)


def morphology_base_gradient_demo(image):
    gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
    ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
    kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 3))
    dst = cv.morphologyEx(binary, cv.MORPH_GRADIENT, kernel)
    cv.imshow("gradient", dst)


def morphology_gradient_demo(image):
    kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 3))
    dm = cv.dilate(image, kernel)
    em = cv.erode(image, kernel)
    internal_gradient = cv.subtract(image, em)
    external_gradient = cv.subtract(dm, image)
    cv.imshow("internal gradient", internal_gradient)
    cv.imshow("external gradient", external_gradient)


print("-----------Python OpenCV Tutorial--------------")
src = cv.imread("C:/cv-samples/data/lena.jpg")
cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)
cv.imshow("input image", src)

top_hat_demo(src)
black_hat_demo(src)
top_hat_binary_demo(src)
black_hat_binary_demo(src)
morphology_base_gradient_demo(src)
morphology_gradient_demo(src)

cv.waitKey(0)

cv.destroyAllWindows()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值