TN = 32
FP = 8
FN = 18
精度 = ( TP + TN ) / ( TP + TN + FP + FN )
打印(精度)
输出:
0.74
假设我们有一个分类器,它总是预测“狗”。
| | 预测类别 |
| — | — |
| 猫 | 狗 |
| 实际
班级 | 猫 | 0 | 50 |
| 狗 | 0 | 50 |
在这种情况下,我们的精度为 0.5:
TP , TN , FP , FN = 0 , 50 , 50 , 0
精度 = (TP + TN )/ (TP + TN + FP + FN )
打印(精度)
输出:
0.5
准确性悖论
我们将证明所谓的准确性悖论。
垃圾邮件识别分类器由以下混淆矩阵描述:
| | 预测类别 |
| — | — |
| 垃圾邮件 | 火腿 |
| 实际
班级 | 垃圾邮件 | 4 | 1 |
| 火腿 | 4 | 91 |
TP , TN , FP , FN = 4 , 91 , 1 , 4
准确性 = (TP + TN )/ (TP + TN + FP + FN )
打印(准确性)
输出:
0.95
以下分类器仅预测“ham”并具有相同的准确性。
| | 预测类别 |
| — | — |
| 垃圾邮件 | 火腿 |
| 实际
班级 | 垃圾邮件 | 0 | 5 |
| 火腿 | 0 | 95 |
TP , TN , FP , FN = 0 , 95 , 5 , 0
精度 = (TP + TN )/ (TP + TN + FP + FN )
打印(准确性)
输出:
0.95
该分类器的准确率为 95%,即使它根本无法识别任何垃圾邮件。
精确
–
精度是正确识别的阳性案例与所有预测的阳性案例的比率,即正确和
错误预测的案例为positive
。精度是检索到的与查询相关的文档的比例。公式:
pr电子C一世秒一世○n=吨磷吨磷+F磷
我们将通过一个例子来证明这一点。
| | 预测类别 |
| — | — |
| 垃圾邮件 | 火腿 |
| 实际
班级 | 垃圾邮件 | 12 | 14 |
| 火腿 | 0 | 114 |
我们可以计算precision
我们的例子:
TP = 114
FP = 14
# 公式中不需要 FN (0) 和 TN (12)!
精度 = TP / ( TP + FP )
打印( f "precision: {precision:4.2f} " )
输出:
精度:0.89
练习:在继续阅读文本之前,请先考虑该值的precision
含义。如果您查看我们的垃圾邮件过滤器示例的精确度度量,它会告诉您关于垃圾邮件过滤器质量的什么信息?理想垃圾邮件过滤器的混淆矩阵的结果是什么样的?什么更糟,高 FP 或 FN 值?
您将在以下说明中间接找到答案。
顺便说一下,理想的垃圾邮件过滤器的 FP 和 FN 值都为 0。
先前的结果意味着 100 封邮件中有 11 封会被归类为火腿,即使它们是垃圾邮件。89 个被正确归类为火腿。这是我们应该讨论错误分类成本的地方。当垃圾邮件不被识别为“垃圾邮件”,而是作为“火腿”呈现给我们时,这很麻烦。如果百分比不是太高,这很烦人但不是灾难。相比之下,当非垃圾邮件被错误地标记为垃圾邮件时,该电子邮件在许多情况下不会显示甚至自动删除。例如,这会带来失去客户和朋友的高风险。该措施precision
没有对最后提到的这个问题类别作出任何声明。其他措施呢?
我们将看看recall
和F1-score
。
记起
–
召回率,也称为灵敏度,是正确识别的阳性案例与所有实际阳性案例的比率,它是“假阴性”和“真阳性”的总和。
r电子C一个升升=吨磷吨磷+FN
TP = 114
FN = 0
# 公式中不需要 FT (14) 和 TN (12)!
召回 = TP / ( TP + FN )
打印( f "recall: {recall:4.2f} " )
输出:
召回:1.00
值 1 表示没有非垃圾邮件被错误地标记为垃圾邮件。对于一个好的垃圾邮件过滤器来说,这个值应该是 1 很重要。我们之前已经讨论过这个。
F1-分数
我们将检查的最后一个指标是 F1 分数。
F1=21r电子C一个升升+1pr电子C一世秒一世○n=2⋅pr电子C一世秒一世○n⋅r电子C一个升升pr电子C一世秒一世○n+r电子C一个升升
TF = 7 # 我们将 True false 值设置为 5 %
print ( " FN FP TP pre acc rec f1" )
for FN in range ( 0 , 7 ):
如果你也是看准了Python,想自学Python,在这里为大家准备了丰厚的免费学习大礼包,带大家一起学习,给大家剖析Python兼职、就业行情前景的这些事儿。
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、全套PDF电子书
书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。
四、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
五、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
成为一个Python程序员专家或许需要花费数年时间,但是打下坚实的基础只要几周就可以,如果你按照我提供的学习路线以及资料有意识地去实践,你就有很大可能成功!
,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
五、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
成为一个Python程序员专家或许需要花费数年时间,但是打下坚实的基础只要几周就可以,如果你按照我提供的学习路线以及资料有意识地去实践,你就有很大可能成功!
最后祝你好运!!!