python机器学习评估指标,阿里专家原创

TN = 32

FP = 8

FN = 18

精度 = ( TP + TN ) / ( TP + TN + FP + FN )

打印(精度)

输出:

0.74

假设我们有一个分类器,它总是预测“狗”。

| | 预测类别 |

| — | — |

| 猫 | 狗 |

| 实际

班级 | 猫 | 0 | 50 |

| 狗 | 0 | 50 |

在这种情况下,我们的精度为 0.5:

TP , TN , FP , FN = 0 , 50 , 50 , 0

精度 = (TP + TN )/ (TP + TN + FP + FN )

打印(精度)

输出:

0.5

准确性悖论


我们将证明所谓的准确性悖论。

垃圾邮件识别分类器由以下混淆矩阵描述:

| | 预测类别 |

| — | — |

| 垃圾邮件 | 火腿 |

| 实际

班级 | 垃圾邮件 | 4 | 1 |

| 火腿 | 4 | 91 |

TP , TN , FP , FN = 4 , 91 , 1 , 4

准确性 = (TP + TN )/ (TP + TN + FP + FN )

打印(准确性)

输出:

0.95

以下分类器仅预测“ham”并具有相同的准确性。

| | 预测类别 |

| — | — |

| 垃圾邮件 | 火腿 |

| 实际

班级 | 垃圾邮件 | 0 | 5 |

| 火腿 | 0 | 95 |

TP , TN , FP , FN = 0 , 95 , 5 , 0

精度 = (TP + TN )/ (TP + TN + FP + FN )

打印(准确性)

输出:

0.95

该分类器的准确率为 95%,即使它根本无法识别任何垃圾邮件。

精确

精度是正确识别的阳性案例与所有预测的阳性案例的比率,即正确和

错误预测的案例为positive。精度是检索到的与查询相关的文档的比例。公式:

pr电子C一世秒一世○n=吨磷吨磷+F磷

我们将通过一个例子来证明这一点。

| | 预测类别 |

| — | — |

| 垃圾邮件 | 火腿 |

| 实际

班级 | 垃圾邮件 | 12 | 14 |

| 火腿 | 0 | 114 |

我们可以计算precision我们的例子:

TP = 114

FP = 14

# 公式中不需要 FN (0) 和 TN (12)!

精度 = TP / ( TP + FP )

打印( f "precision: {precision:4.2f} " )

输出:

精度:0.89

练习:在继续阅读文本之前,请先考虑该值的precision含义。如果您查看我们的垃圾邮件过滤器示例的精确度度量,它会告诉您关于垃圾邮件过滤器质量的什么信息?理想垃圾邮件过滤器的混淆矩阵的结果是什么样的?什么更糟,高 FP 或 FN 值?

您将在以下说明中间接找到答案。

顺便说一下,理想的垃圾邮件过滤器的 FP 和 FN 值都为 0。

先前的结果意味着 100 封邮件中有 11 封会被归类为火腿,即使它们是垃圾邮件。89 个被正确归类为火腿。这是我们应该讨论错误分类成本的地方。当垃圾邮件不被识别为“垃圾邮件”,而是作为“火腿”呈现给我们时,这很麻烦。如果百分比不是太高,这很烦人但不是灾难。相比之下,当非垃圾邮件被错误地标记为垃圾邮件时,该电子邮件在许多情况下不会显示甚至自动删除。例如,这会带来失去客户和朋友的高风险。该措施precision没有对最后提到的这个问题类别作出任何声明。其他措施呢?

我们将看看recallF1-score

记起

召回率,也称为灵敏度,是正确识别的阳性案例与所有实际阳性案例的比率,它是“假阴性”和“真阳性”的总和。

r电子C一个升升=吨磷吨磷+FN

TP = 114

FN = 0

# 公式中不需要 FT (14) 和 TN (12)!

召回 = TP / ( TP + FN )

打印( f "recall: {recall:4.2f} " )

输出:

召回:1.00

值 1 表示没有非垃圾邮件被错误地标记为垃圾邮件。对于一个好的垃圾邮件过滤器来说,这个值应该是 1 很重要。我们之前已经讨论过这个。

F1-分数


我们将检查的最后一个指标是 F1 分数。

F1=21r电子C一个升升+1pr电子C一世秒一世○n=2⋅pr电子C一世秒一世○n⋅r电子C一个升升pr电子C一世秒一世○n+r电子C一个升升

TF = 7 # 我们将 True false 值设置为 5 %

print ( " FN FP TP pre acc rec f1" )

for FN in range ( 0 , 7 ):

如果你也是看准了Python,想自学Python,在这里为大家准备了丰厚的免费学习大礼包,带大家一起学习,给大家剖析Python兼职、就业行情前景的这些事儿。

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、全套PDF电子书

书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

四、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

成为一个Python程序员专家或许需要花费数年时间,但是打下坚实的基础只要几周就可以,如果你按照我提供的学习路线以及资料有意识地去实践,你就有很大可能成功!
,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

成为一个Python程序员专家或许需要花费数年时间,但是打下坚实的基础只要几周就可以,如果你按照我提供的学习路线以及资料有意识地去实践,你就有很大可能成功!
最后祝你好运!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值