AI
RsqTcqssss
这个作者很懒,什么都没留下…
展开
-
吴恩达神经网络Course——week4
一个多层的神经网络,结构是输入层->隐藏层->隐藏层->···->隐藏层->输出层**,在每一层中,我会首先计算Z = np.dot(W,A) + b,这叫做【linear_forward】,然后再计算A = relu(Z)或者A = sigmoid(Z),这叫做【linear_activation_forward】,合并起来就是这一层的计算方法,所以每 初始化网络参数 前向传播 2.1 计算一层的中线性求和的部分 2.2 计算激活函数的部分(...原创 2020-11-01 14:29:46 · 196 阅读 · 0 评论 -
吴恩达神经网络Course1 -week3
构建神经网络的一般方法是:定义神经网络结构(输入单元的数量,隐藏单元的数量等)。 初始化模型的参数 循环:实施前向传播 计算损失 实现向后传播 更新参数(梯度下降) 我们要它们合并到一个nn_model() 函数中,当我们构建好了nn_model()并学习了正确的参数,我们就可以预测新的数据。定义神经网络结构在构建之前,我们要先把神经网络的结构给定义好:n_x: 输入层的数量 n_h: 隐藏层的数量(这里设置为4) n_y: 输出层的数量初始化模型...原创 2020-11-01 14:26:18 · 179 阅读 · 0 评论 -
吴恩达神经网络Course1
现在总算是把我们加载的数据弄完了,我们现在开始构建神经网络。以下是数学表达式,如果对数学公式不甚理解,请仔细看一下吴恩达的视频。建立神经网络的主要步骤是: 定义模型结构(例如输入特征的数量) 初始化模型的参数 循环: 3.1 计算当前损失(正向传播) 3.2 计算当前梯度(反向传播) 3.3 更新参数(梯度下降) ...原创 2020-11-01 14:21:46 · 162 阅读 · 0 评论