题目链接
原创:中梓星音
禁止转载;禁止任何培训机构盗用,本文仅供交流学习使用。
题目大意:
对矩阵 A = ( 2 3 0 1 0 1 1 0 5 ) A = \begin{pmatrix} 2 & 3 &0 \\ 1 & 0 & 1 \\ 1 & 0 & 5 \end{pmatrix} A=⎝⎛211300015⎠⎞进行 A = T D U A=TDU A=TDU 分解,要求T为正交矩阵,D为所有对角元素为正的对角阵,U为单位上三角矩阵。
考察:
回想大学教科书和课上一般没有专门的练习题在做TDU分解,所以猜测TDU分解是由几个学过的矩阵分解组合而成。本题考验考生对矩阵分解的熟练度、组合能力和对矩阵的直觉。
首先根据“T是正交矩阵”的条件可以想到A可以三角化为 A=TB 的形式,B为上三角矩阵,但B不是单位上三角矩阵,所以还需要对B进行额外的分解。
这里容易想到可对B进行LU分解,因为这里的B已经是三角阵了,所以分解出来的L必然是对角阵(可做成D)且L保持B的对角元素不变,并且根据LU分解的性质,U完美符合单位上三角阵的条件,可做成本题的U。
想到这里,我们还差最后一块拼图,如何保证D的所有的对角元素为正?——其实在正交化的过程中,只要不改变正交向量的方向(乘以-1)就能做到所有B的对角元素为正,从而保证L(即D)的对角元素为正。
解:
对A的各个列向量进行Gram-Schmidt正交化,可直接确定一组正交基:
{ v 1 = 1 6 ( 2 1 1 ) , v 2 = 1 3 ( 1 − 1 − 1 ) , v 3 = 1 2 ( 0 − 1 1 ) } \{ \mathbf{v_1} = \frac{1}{\sqrt{6}}\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \mathbf{v_2} = \frac{1}{\sqrt{3}}\begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, \mathbf{v_3} = \frac{1}{\sqrt{2}}\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \} {
v1=61⎝⎛211⎠⎞,v2=31⎝⎛1−1−1⎠⎞,v3=21⎝