隔板法

本文详细介绍了隔板法在解决元素分配问题中的三种常见题型,包括“至少分配一个”、“每人分配多于一个”以及“允许有人分配数为零”。通过实例解析和结论总结,帮助读者理解和掌握隔板法的解题技巧,以应对不同类型的分配问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

隔板法题型解析原文

首先大家应该明确运用“隔板法”必须同时满足三个条件才可以:①题目中要分的元素没有任何差别,必须完全相同;②所分的元素要求全部分完,不许存在剩余的情况;③每个人都必须分到一个元素,不可以出现有人分不到的情况。其次隔板法之所以不好掌握,就是因为这类题型有三种不同的变形,每一种变形都有其快速的解法,大家一定要好好理解,并熟练的应用到解题中去。

1.“至少分配一个”型

【例1】将7个完全相同的球分给4个盒子,要求每个盒子至少得到1个球,一共有几种分配方法?

A.14 B.18 C.20 D.22

【答案】C

【解析】7个球分给四个盒子,有6个空,每人至少得到一个,(1)要隔入3个板;(2)一个空不能同时隔入多个板子;(3)两边不能隔入板子,即有种。因此选择C选项。

【结论】m个相同的物品分给k个人,每人至少分得一个,m≥k时,m个物品有m-1个空,分给k个人要隔入k-1块板子,因此每人至少分一个有种分法。

2.“每人分配多于一个”型

【例2】将25个完全相同的球分给6个盒子,要求每个盒子至少得到3个球,一共有几种分配方法?【答案】792

【解析】创设隔板情景,每盒子至少3个名额,我们先给6个盒子每盒分配两个球,本题即转换为“13个球分配到6个盒子,每盒至少1个球,问共有多少种不同的分配方案?”这样就可以应用我们经典的隔板法解题思路,13个球有12个空,6个盒子需要隔入5个板子,即有种不同的分配方案。

【结论】创设隔板情境,我们先把多于一个的球分配出去,相应的总物品也会减少,同时题目就会比变成第一种“至少分配一个”的题型,再应用经典隔板法,问题便迎刃而解。

3.“允许有人分配数为零”型

我们把第一个题型的题稍作改变

【例3】将7个大小相同的球分给4个小朋友(允许有人没分到球),一共有几种分配方法?

【答案】120

【解析】如果题这样问,需要我们考虑到会有小朋友一个球都分不到的情况存在,要创设隔板情境,必须每个小朋友至少分得一个球,因此,我们先把借来4个球,给每个小朋友一人分一个,本题即转化为“将11个大小相同的球分给4个小朋友,要求每个小朋友至少得到1个球,一共有几种分配方法?” 这样就可以应用我们经典的隔板法解题思路,11个球有10个空,4个小朋友需要隔入3个板子,即有种不同的分配方案。

【结论】创设隔板情境,我们先给每个人分得一个物品,相应物品总数会增加,同时题目就会变成第一种“至少分配一个”的题型,再应用经典隔板法,问题迎刃而解。

以上便是隔板法的三种考题类型,希望各位同学能熟练掌握并应用到做题中!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值