从Hash索引到LSM树(一)

前言

数据库算是软件应用系统中最常用的一类组件了,不管是一个庞大而复杂的电商系统,还是一个简单的个人博客,多多少少都会用到数据库,或是存储海量的数据,或是存储简单的状态信息。一般地,我们都喜欢将数据库划分为关系型数据库非关系型数据库(又称NoSQL数据库),前者的典型代表是MySQL数据库,后者的典型代表是HBase数据库。不管是关系型,还是非关系型,数据库都离不开两个最基本的功能:(1)数据存储;(2)数据查询。简单来说就是,当你把数据丢给数据库时,它能够保持下来,并在稍后你想获取的时候,把数据返回给你。

围绕着这两个基本功能,各类数据库都运用了很多技术手段对其进行了优化,其中最广为人知的当属数据库索引技术。索引是一种数据结构,它在牺牲少量数据存储(写)性能的情况下,可以大幅提升数据查询(读)性能。索引也有很多种类型,Hash索引算是最简单高效的一种了,但是由于它自身的限制,在数据库系统中并不被广泛使用。当今最常用的索引技术是B/B+树索引,被广泛地应用在关系型数据库中,主要应用于读多写少的场景。随着NoSQL数据库的兴起,LSM(Log-Structured Merged-Tree)树也逐渐流行,并被Google的BigTable论文所发扬光大。严格来说,LSM树并不算一种传统意义上的索引,它更像是一种设计思想,主要应用于写多读少的场景。

本系列文章,将从实现最简单的Key-Value数据库讲起,然后针对实现过程中遇到的一些瓶颈,采用上述的索引技术,对数据库进行优化,以此达到对数据库的索引技术有一个较为深刻的理解。

最简单的数据库

Martin Kleppmann在《Designing Data-Intensive Applications》一书中给出了一个最简单数据库的实现:

#!/bin/bash
db_set() {
  echo "$1,$2" >> database
}

db_get() {
  grep "^$1," database | sed -e "s/^$1,//" | tail -n 1
}

这不到10行的shell代码实现了一个简单的Key-Value数据库。它一共有两个函数,db_setdb_get,前者对应数据存储功能,后者对应数据查询功能。该数据库采用简单的文本格式(database文件)进行数据存储,每条记录包含了一个键值对,key和value之间通过逗号(,)进行分隔。

数据库的使用方法也很简单,通过调用db_set key value可以将key及其对应的value存储到数据库中;通过db_get key可以得到该key对应的value:

$ db_set 123456 '{"name":"London","attractions":["Big Ben","London Eye"]}' 
$ db_set 42 '{"name":"San Francisco","attractions":["Golden Gate Bridge"]}'
$ db_get 42
{"name":"San Francisco","attractions":["Golden Gate Bridge"]}

透过db_set的实现我们发现,该数据库每次写都是直接往database文件中追加记录,鉴于文件系统顺序写的高效,因此该数据库的数据写入具有较高的性能。但是追加写也意味着,对同一个key进行更新时,其对应的旧的value并不会被覆盖,这也使得每次调用db_get获取某个key的value时,总是需要遍历所有记录,找到所有符合条件的value,并取其中最新的一个。因此,该数据库的读性能是非常低的。

最简单的数据库读写操作

下面我们采用Java对这个最简单的数据库进行重写:

/**
 * SimpleKvDb.java
 * 追加写
 * 全文件扫描读
 */
public class SimpleKvDb implements KvDb {
    ...
    @Override
    public String get(String key) {
        try (Stream<String> lines = logFile.lines()) {
            // step1: 筛选出该key对应的的所有value(对应grep "^$1," database)
            List<String> values = lines
                    .filter(line -> Util.matchKey(key, line))
                    .collect(Collectors.toList());
            // step2: 选取最新值(对应 sed -e "s/^$1,//" | tail -n 1)
            String record = values.get(values.size() - 1);
            return Util.valueOf(record);
        } catch (IOException e) {
            e.printStackTrace();
            return null;
        }
    }
    @Override
    public void set(String key, String value) {
        // step1: 追加写(对应 echo "$1,$2" >> database)
        String record = Util.composeRecord(key, value);
        logFile.append(record);
    }
    ...
}

使用JHM进行压测结果如下:

Benchmark                                            Mode  Cnt  Score   Error  Units
SimpleKvDbReadBenchmark.simpleKvDb_get_10000_test    avgt    8  0.631 ± 0.033  ms/op // 读耗时,1w条记录
SimpleKvDbReadBenchmark.simpleKvDb_get_100000_test   avgt    8  7.020 ± 0.842  ms/op // 读耗时,10w条记录
SimpleKvDbReadBenchmark.simpleKvDb_get_1000000_test  avgt    8  62.562 ± 5.466 ms/op // 读耗时,100w条记录
SimpleKvDbWriteBenchmark.simpleKvDb_set_test         avgt    8  0.036 ± 0.005  ms/op // 写耗时

从结果可以看出,该数据库的实现具有较高的写性能,但是读性能很低,而且读耗时会随着数据量的增加而线性增长

那么如何优化SimpleKvDb的读性能?引入索引技术!

索引(index)是从数据库中的数据衍生出来的一种数据结构,它并不会对数据造成影响,只会影响数据库的读写性能。对于读操作,它能快速定位到目的数据,从而极大地提升读性能;对于写操作,由于需要增加额外的更新索引操作,因此会略微降低写性能。

如前言所述,索引也有很多类型,每种索引的特点都各有差别。因此到底要不要采用索引,具体采用哪种索引,需要根据实际的应用场景来决定。

下面,我们将首先采用最简单高效的Hash索引对SimpleKvDb进行优化。

给数据库加上Hash索引

考虑到Key-Value数据库本身就类似于Hash表的这个特点,我们很容易想到如下的索引策略:在内存中维护一个Hash表,记录每个key对应的记录在数据文件(如前文所说的database文件)中的字节位移(byte offset)

对于写操作,在往数据文件追加记录后,还需要更新Hash表;对于读操作,首先通过Hash表确定该key对应记录在数据文件中的位移,然后通过字节位移快速找到value在数据文件中的位置并读取,从而避免了全文遍历这样的低效行为。

加上索引之后的读写操作

SimpleKvDb加上Hash索引,对应的代码实现为:

/**
 * HashIdxKvDb.java
 * 追加写
 * 使用Hash索引提升读性能
 */
public class HashIdxKvDb implements KvDb {
    // 数据存储文件
    private final LogFile curLog;
    // 索引,value为该key对应的数据在文件中的offset
    private final Map<String, Long> idx;
    ...
    @Override
    public String get(String key) {
        if (!idx.containsKey(key)) {
            return "";
        }
        // step1: 读取索引
        long offset = idx.get(key);
        // step2: 根据索引读取value
        String record = curLog.read(offset);
        return Util.valueOf(record);
    }
    @Override
    public void set(String key, String value) {
        String record = Util.composeRecord(key, value);
        long curSize = curLog.size();
        // step1: 追加写数据
        if (curLog.append(record) != 0) {
            // step2: 更新索引
            idx.put(key, curSize);
        }
    }
		...
}

在实现HashIdxKvDb之前,我们将数据存储文件抽象成了LogFile对象,它的两个基本方法是append(追加写记录)和read(根据offset读记录),其中,read函数通过RandomAccessFileseek方法快速定位到记录所处的位置,具体实现如下:

// 追加写的日志文件,存储数据库数据
class LogFile {
    // 文件所在路径
    private Path path;
		...
    // 向日志文件中写入一行记录,自动添加换行符
    // 返回成功写入的字节大小
    long append(String record) {
        try {
            record += System.lineSeparator();
            Files.write(path, record.getBytes(), StandardOpenOption.APPEND);
            return record.getBytes().length;
        } catch (IOException e) {
            e.printStackTrace();
        }
        return 0;
    }
    // 读取offset为起始位置的一行
    String read(long offset) {
        try (RandomAccessFile file = new RandomAccessFile(path.toFile(), "r")) {
            file.seek(offset);
            return file.readLine();
        } catch (IOException e) {
            e.printStackTrace();
        }
        return "";
    }
    ...
}

使用JHM进行压测结果如下:

Benchmark                                              Mode  Cnt  Score   Error  Units
HashIdxKvDbReadBenchmark.hashIdxKvDb_get_10000_test    avgt    8  0.021 ± 0.001  ms/op // 读耗时,1w条记录
HashIdxKvDbReadBenchmark.hashIdxKvDb_get_100000_test   avgt    8  0.021 ± 0.001  ms/op // 读耗时,10w条记录
HashIdxKvDbReadBenchmark.hashIdxKvDb_get_1000000_test  avgt    8  0.021 ± 0.001  ms/op // 读耗时,100w条记录
HashIdxKvDbWriteBenchmark.hashIdxKvDb_set_test         avgt    8  0.038 ± 0.005  ms/op // 写耗时

从压测结果可以看出,相比SimpleKvDbHashIdxKvDb的读性能有了大幅的提升,而且读耗时不再随着数据量的增加而成线性增长;而且写性能并没有明显的下降。

虽然Hash索引实现很简单,却是极其的高效,它只需要1次磁盘寻址(seek操作),加上1次磁盘I/O(readLine操作),就能将数据加载出来。如果数据之前已经加载到文件系统缓存里,甚至都不用磁盘I/O。

数据合并——compact

到目前为止,不管是SimpleKvDb,还是HashIdxKvDb,写操作都是不断在一个文件中追加数据,这种存储方式,通常我们称之为a、append-only log

那么,如何才能避免append-only log无休止的一直扩张下去,直到磁盘空间不足呢?

append-only log的一个显著特点是旧的记录不会被覆盖删除,但是这些数据往往是无用的,因为读取某个key的value时,数据库都是取其最新的值。因此,解决该问题的一个思路是把这些无用的记录清除掉:

(1)当往append-only log追加数据到达一定大小后,另外创建一个新的append-only log进行追加。在这种机制下,数据分散到多个append-only log文件中存储,我们称这些log文件为segment file

(2)保证只有当前的current segment file是可读可写,old segment file只读不写。

segment file机制

(3)对old segment file进行compact操作——只保留每个key对应的最新记录,把的老记录删除。

单文件compact操作

compact操作往往是在后台线程中执行,数据库会将合并的结果写到一个新的compacted segment file中,这样在执行compact操作时,就不会影响从old segment file中读数据的逻辑。等到compact操作完成之后,再把old segment file删除,后续的读操作迁移到compacted segment file上。

现在,单个compacted segment file中的key都是唯一的,但是多个compacted segment file之间还是有可能存在重复的key,我们还能够更近一步,对多个compacted segment file再一次进行compact操作,这样数据量会再次减少。

多文件compact操作

类似的compact操作可以一层层执行下去,比如,可以对level2 compacted segment file进行compact,生成level3 compacted segment file。但是并不是compact的层次越多越好,具体的compact策略需要结合实际的应用场景进行设计。

给HashIdxKvDb加上compact机制

下面,我们试着给HashIdxKvDb加上compact机制。由于在compact机制下,数据会分散在多个segment file中存储,因此之前的Hash索引机制不再适用,我们需要给每个segment file都单独维护一份Hash索引。当然,这样也比较容易实现,只需要维护一个Hash表,key为segment file,value为该segment file对应的Hash索引。

多segment file下的hash索引

对应的代码实现如下:

// 多文件哈希索引实现
class MultiHashIdx {
    ...
    private Map<LogFile, Map<String, Long>> idxs;
    // 获得指定LogFile中,Key的索引
    long idxOf(LogFile file, String key) {
        if (!idxs.containsKey(file) || !idxs.get(file).containsKey(key)) {
            return -1;
        }
        return idxs.get(file).get(key);
    }

    // 添加指定LogFile中Key的索引
    void addIdx(LogFile file, String key, long offset) {
        idxs.putIfAbsent(file, new ConcurrentHashMap<>());
        idxs.get(file).put(key, offset);
    }
    ...
}

另外,我们还需要在CompactionHashIdxKvDb里分别维护一份old segment file、level1 compacted segment file和level2 compacted segment file集合,并通过ScheduledExecutorService定时对这些集合进行compact操作。

/**
 * 追加写,当当前segemnt file到达一定大小后,追加到新到segment file上。并定时对旧的segment file进行compact。
 * 为每个segment file维持一个哈希索引,提升读性能
 * 支持单线程写,多线程读
 */
public class CompactionHashIdxKvDb implements KvDb {
    ...
    // 当前追加写的segment file路径
    private LogFile curLog;

    // 写old segment file集合,会定时对这些文件进行level1 compact合并
    private final Deque<LogFile> toCompact;
    // level1 compacted segment file集合,会定时对这些文件进行level2 compact合并
    private final Deque<LogFile> compactedLevel1;
    // level2 compacted segment file集合
    private final Deque<LogFile> compactedLevel2;
    // 多segment file哈希索引
    private final MultiHashIdx idx;

    // 进行compact的定时调度
    private final ScheduledExecutorService compactExecutor;
    ...
}

相比于HashIdxKvDbCompactionHashIdxKvDb 在写入新的数据之前,需要判断当前文件大小是否写满,如果写满了,则需要创建新的LogFile进行追加,并将写满后的LogFile归档到toCompact队列中。

@Override
public void set(String key, String value) {
    try {
        // 如果当前LogFile写满了,则放到toCompact队列中,并创建新的LogFile
        if (curLog.size() >= MAX_LOG_SIZE_BYTE) {
            String curPath = curLog.path();
            Map<String, Long> oldIdx = idx.allIdxOf(curLog);
            curLog.renameTo(curPath + "_" + toCompactNum.getAndIncrement());
            toCompact.addLast(curLog);
            // 创建新的文件后,索引也要更新
            idx.addAllIdx(curLog, oldIdx);
            curLog = LogFile.create(curPath);
            idx.cleanIdx(curLog);
        }

        String record = Util.composeRecord(key, value);
        long curSize = curLog.size();
        // 写成功则更新索引
        if (curLog.append(record) != 0) {
            idx.addIdx(curLog, key, curSize);
        }
    } catch (IOException e) {
        e.printStackTrace();
    }
}

CompactionHashIdxKvDb 的读操作相对麻烦,因为数据被分散在多个segment file上,所以需要按照如下顺序完成数据查找,直到查询到为止:当前追加的LogFile->toCompact队列->compactedLevel1队列->compactedLevel2队列。因此,CompactionHashIdxKvDb 的读操作在极端情况下(所查询的数据存储在comactedLevel2队列上时)也会较为低效。

@Override
public String get(String key) {
    // 第一步:从当前的LogFile查找
    if (idx.idxOf(curLog, key) != -1) {
        long offset = idx.idxOf(curLog, key);
        String record = curLog.read(offset);
        return Util.valueOf(record);
    }
    // 第二步:从toCompact中查找
    String record = find(key, toCompact);
    if (!record.isEmpty()) {
        return record;
    }
    // 第三步:从 compactedLevel1 中查找
    record = find(key, compactedLevel1);
    if (!record.isEmpty()) {
        return record;
    }
    // 第四步:从 compactedLevel2 中查找
    record = find(key, compactedLevel2);
    if (!record.isEmpty()) {
            return record;
    }
    return "";
}

toCompact队列里的old segment file进行单文件level1 compact操作时,可以利用Hash索引。因为Hash索引上所对应的记录总是最新的,因此只需遍历Hash索引,将每个key对应的最新记录查询出来,写到新的level1 compacted segment file中即可。

// 进行level1 compact,对单个old segment file合并
void compactLevel1() {
    while (!toCompact.isEmpty()) {
        // 创建新的level1 compacted segment file
        LogFile newLogFile = LogFile.create(curLog.path() + "_level1_" + level1Num.getAndIncrement());
        LogFile logFile = toCompact.getFirst();
        // 只保留每个key对应的最新的value
        idx.allIdxOf(logFile).forEach((key, offset) -> {
            String record = logFile.read(offset);
            long curSize = newLogFile.size();
            if (newLogFile.append(record) != 0) {
                idx.addIdx(newLogFile, key, curSize);
            }
        });
        // 写完后存储到compactedLevel1队列中,并删除toCompact中对应的文件
        compactedLevel1.addLast(newLogFile);
        toCompact.pollFirst();
        logFile.delete();
    }
}

compactedLevel1队列进行多文件level2 compact的策略是:将当前队列里所有的level1 compacted segment file合并成一个level2 compacted segment file。具体步骤如下:

1、生成一份compactedLevel1队列的snapshot。目的是为了避免在level2 compact过程中,有新的level1 compacted segment file加入到队列造成影响。

2、对snapshot进行compact操作,按照从新到旧的顺序,将level1 compacted segment file中的记录写入新的level2 compacted segment file中,如果发现level2 compacted segment file已经存在该key,则跳过。

3、等完成任务后,再从compactedLevel1队列里删除已经合并过的level1 compacted segment file。

// 进行level2 compact,针对compactedLevel1队列中所有的文件进行合并
void compactLevel2() {
    ...
    // 生成一份快照
    Deque<LogFile> snapshot = new LinkedList<>(compactedLevel1);
    if (snapshot.isEmpty()) {
        return;
    }
    int compactSize = snapshot.size();
    // level2的文件命名规则为:filename_level2_num
    LogFile newLogFile = LogFile.create(curLog.path() + "_level2_" + level2Num.getAndIncrement());
    while (!snapshot.isEmpty()) {
        // 从最新的level1 compacted segment file开始处理
        LogFile logFile = snapshot.pollLast();
        logFile.lines().forEach(record -> {
            String key = Util.keyOf(record);
            // 只有当前level2 compacted segment file中不存在的key才写入
            if (idx.idxOf(newLogFile, key) == -1) {
                // 写入成功后,更新索引
                long offset = newLogFile.size();
                if (newLogFile.append(record) != 0) {
                    idx.addIdx(newLogFile, key, offset);
                }
            }
        });
    }
    compactedLevel2.addLast(newLogFile);
    // 写入完成后,删除compactedLevel1队列中相应的文件
    while (compactSize > 0) {
        LogFile logFile = compactedLevel1.pollFirst();
        logFile.delete();
        compactSize--;
    }
    ...
}

总结

本文首先介绍了Martin Kleppmann给出的最简单的数据库,并使用Java语言对它进行了重新的实现,接着采用Hash索引和compact机制对其进行了一系列的优化。

SimpleKvDb采用append-only log的方式存储数据,append-only log最主要的优点是具备很高的写入性能(文件系统的顺序写比随机写要快很多)。追加写也意味着同一个key对应的旧记录不会被覆盖删除,因此在查询数据时,需要遍历整个文件,找到该key的所有记录,并选取最新的一个。因为涉及到全文遍历,因此SimpleKvDb的读性能非常低。

为了优化SimpleKvDb的读性能,我们实现了具有Hash索引的HashIdxKvDb。Hash索引是一个在内存中维护的Hash表,保存每个key对应的记录在文件中的offset。因此每次数据查询只需要1次磁盘寻址,加上1次磁盘I/O,非常高效。

为了解决append-only log一直扩张导致磁盘空间不足的问题,我们给HashIdxKvDb引入了compact机制,实现了CompactionHashIdxKvDbcompact机制能够有效清理数据库中的无效的旧数据,从而减缓了磁盘空间的压力

Hash索引虽然简单高效,但是有如下两个限制:

1、必须在内存中维护Hash索引。如果选择在磁盘上实现Hash索引,那么将会带来大量的磁盘随机读写,导致性能的急剧下降。另外,随着compact机制的引入,数据被分散在多个segment file中存储,我们不得不为每个segment file维护一份Hash索引,这就导致Hash索引的内存占用量不断增加,给系统带来了很大的内存压力。

2、区间查询非常低效。比如,当需要查询数据库中范围在[key0000, key9999]之间的所有key时,必须遍历索引中所有的元素,然后找到符合要求的key。

针对Hash索引的这两个限制,要怎样进行优化呢?本系列的下一篇文章,我们将介绍另一种不存在这两个限制的索引——LSM树。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值